Phyt©n

CPI2-B1 In-System Device Programmer

User's Guide

Member of ChipProg-ISP2 family

© 2017 Phyton, Inc. Microsystems and Dewelopment Tools

CPI2-B1 In-System Device Programmer

© 2017 Phyton, Inc. Microsystems and Development Tools

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for anyloss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: August 2017 in (whereever you are located)

Contents 3

Table of Contents

Foreword 0
Part | Introduction 17
O =T 4 (T T o] o Te) TP UPPRPIN 17
2 CPI2-Bl dEVICE PrOgIamMIM Bl .. e it it et e et et e e e e e e e e e e e et e et e et e e e e e e et e et e eneeenaeans 19
FEALUTES OVEIVIBW iiiiiiiieiiiee ittt ettt e st e ettt e st e e st e et e e sabeesateeeateeesabeeeateeeaseeesaseesmteeeasseessseesabaesnsaeeanbeesaseesnsaaens
Hardw are characteristics ...
SOTEW AT FEALUTES uiiiiiiiiiiii ittt ettt ettt ettt e s et e et e e sbe e e staeeesae e e beeeabseeesseeebaeeaseeeesseeebeeeasaeesnseeeseeeasneennnees
[OFe] oY g 1=l o] g 1Y = (1 SRR
[O2e] g T g 1=l] g @1 Vi 1 | SRR
Single- and Gang-programming CONtrol MOUESc.ccoiiiiiiiiiiii e s 25
Part Il Installation and Launching 27
1 GEtliNG ASSISTANCE.uuieiiiet et ettt ettt et e et 27
2 Hardware iNStAAtION. e 28
IS VS (=Y (R (Lo LU TR =] 0 =Y o PP 30
4 SOftWAre INSEAIATION. ... e 30
B STAMUP DIaI0G. ettt e 34
6 LaUuNnChing 0eViCe PrOgramMImM Bl S, . ittt ittt e e e e e e e e e e e et e et e e et e e ete et e enaeaaans 36
Part Il Control Interfaces 38
] oo T o o1 =T ol £ PP TPPTT PPN 39
2 Graphical User INTEITaCEci et 40

User Interface Overview
B oo 1o - 1 TSP PU RV OPPOE
LIV =T 1T PSPPSR
The File Menu..
Configuration Files

TRE VIBW IMIBINUL ..ttt ettt esm e e e m e R e e et e n e e e e e e e e nmeeennenneenreenreenne
TRE PrOJECT MEINU ...ttt bttt h e ettt e bb e e o bt e ettt e bb e e ea b et e b et e ebb e e eab e e ebeeensneas
The ProjeCt OPtIONS DIAIOG.ccuutieteieiiie ettt ettt rb et b e e rbe e e b e e e bt e e abe e e san e e ebeeeaneeennneas 45
THe OPEN PrOJECE DIAIOG.eeuveeeiitee ettt b et b e ae e be et e e e s be e e be e e san e e ebeeeabeeennneas 46
Export and IMPOrt ProjeCt DIAIOGSeeouueiiiee ettt ettt ettt e st e e e e sabeesbeeenne 46
PrOJECT REPOSIEONY. ... ettt ettt ettt e hb e s bt e et et e bb e e sab e e aabeeeenbeenabeeebeeanne
THE CONFIGUIE IMENUL ...ttt ettt ettt b et e hb e e e b et et et e be e e e b e e e be e e bb e e eabeeebeeeneneas
The Select Device dialog
THE BUFFEIS QIAIOG ...ttt bbbttt b et e bt e e bt e b e e s ab e e ebe e e nneeeaaneas
The Buffer Configuration di@log............ooeiiiiieiiie et e st 53
The Serialization, Checksum, and LOG DI@IOQcouuiiiiiiiiiie ettt 55
SHAGOW ATEES ...ttt ettt e et e st e r e s et e e r e e n e et e e e e e e nre e e e 56
[T =T = TSY =1 (] o T PO PR PSP PPTOUPR 57
DEVICE SEIIANZALION.........eiieeeiiieeiee sttt ettt e e r e r e e n e 57
Checksum
Signature string
CUSTOM SNAUOW ATEAS ...ttt s re e st esr e e n e e r e e e e e snn e s e aneenneene 60

© 2017 Phyton, Inc. Microsystems and Development Tools

4 CPI2-B1 In-System Device Programmer

(o I = PSPPSR UPPOPRN 60
The PreferenCeS DIAIOGccuuii ittt ettt bttt b e e bt e e b e e e be e e san e e ebeeeaneeeanneas 61
The ENVIFONMENE DIAIOG. ettt ettt ettt b e ae et b et e bt e e e e e e be e e san e e enbe e e aneeeannees 63
FONES e 64
(6o PSPPI 64
MaPPING HOL KEYS ...ttt h e st e et e sab e e st e e e bn e e saneeaaneeean 65
Toolbar
Messages
MISCEIANEOUS SEELINGS ...ttt sttt sa e st e bt esab e e st e e e an e e saneesnneeeas
The EdItor OtIONS DIAIOG.cueeeiutiietie ettt bttt bt e b e be e e be e e e be e e beeesan e e abeeeaneeeanneas
TNE GENEIAI TADeetei ettt r e r e n e e n e n e e
The Key Mappings Tab..............
The Edit Key Command Dialog.
THE COMMANTS IMENUL ...ttt ettt esr et sm e e r e e e e e n e e e e mn e e e e nmeenmeesmeenneenneenne
1022 o711 =] PSPPSR
LS To 4o 1Y =T o 1U O SO P TP OUPR
TNE WINGOW IMIBNU. ...ttt ettt eeme et nme e n e e m e e n e e e s e e e nmnesmeenmeenneenreenne
TRE HEID IMBINUL. ...t ettt e h e et e bt e kbt e e bt ettt ettt e e bt e et et ettt e eabeeebeeensneas
License Management DIAIOGueeiieiaiiie ittt ettt ettt e et e e bt e e e et e e
WIindows o
The Device Information Window
The Device and Algorithm Parameters WINAOWoooiiiiiiiiii e 77
The BUffer DUMD WINOOWooiiiiiiiieiee ettt ettt et e st e et et e ke e e e bt e e be e e bb e e eabeeebeeenenees
The 'Configuring @ BUFfer' dIl0g.........coiuiiii e e
The 'Buffer Setup' dialog................
The 'Display from address' dialog
The "MOify Data' QIAIOQccueeeiueiieiie ettt ettt e bt e b e e be e e b e e e sie e ebe e e nneeenaneas
The 'MemoOry BIOCKS' GIAI0Q.eiitiieiiie ittt et st e ie e b b e e nnnees
LI LCI o= Yo o Lo 1= Lo T TSRO SUUPPP
FIle FOIMEAES oottt e s e r e n e n e
THE "'SAVE FIE" TIBIOQ. ...ttt bbbt b e b bbb e e an e b e ne e nanees
THE CONSOIE WINGOW ...ttt sme et st e r e e et e n e e e s e e e nmnenmeenmeenneenreenne
The Program Manager WINAOWcoieioiiiiiiie ettt ettt b e be e e bb e e sab e e e be e e asbeesabeeebeeeneneas
The Program ManagGEr T8D.........c.uii ittt b et bbbt b e nae e aneeas
AULO PrOGFAIMIMING. ... ettt ettt ettt e e e bt e e bt e e bb e e eab e e ettt e abe e e aab e e eabeeeabeeensbeesabeeabeeenne
LLALCE O] o (o] 4TSN = o TSSO SUUPPRP
IS o110 F= 1 - T PP OP RSP PPTOUPR
The Statistics tab.............
The Memory Card Window
ATV gTe (o S o o]) SO P TP OPPRR

3 SIMPlified USer INtEI aCE ... i e e e e e ans

Settings of Simplified User Interface
Operations with Simplified User Interface
4 Command Line INTEITaACE.cie et
COMM AN LINE OPLIONS teiiiitiiii ettt h et b ettt ettt h et he e eh et e eb e et e e s bt e bt e bt et e enneannenane e
5 ON-the-Fly Control INTEITACE.oiii e

On-the-Fly Command LiN@ OPLIONSeii ittt ettt ettt e sae e bt e e be e e sbeeesbbeeabeeesbeeaaneeeanes 109
ON-the-Fly ULIIITY FEIUIN COURS .eiiiiiiiiiieii ettt ettt sttt et e e bt e e s bt e e e bt e e sbe e e sbbeeanbeeesbeeeaseeeanns 113
ON-the-Fly CONtrol BXAM PIES ...ttt et ettt e bt e e s bt e e e bt e e sbeeesbbeeanbeeesbeeasnaeeanns 114

Part IV Operating Procedures 115

1 How to check if deVIiCe IS hIanK.......oo e 115

© 2017 Phyton, Inc. Microsystems and Development Tools

Contents 5

HOW 10 BraSE @ ABVICE . .cuuiiii ettt e e e e e et e e e e ean s

How to read data from deVICEe.......o.uu i

HOW tO PrOgram @ EVICE.uu ittt ettt et et eeee s

How to load afile iNtO @BUFFET .o e

How to edit databefore programming ... e bbb
HOW tO CONFIQUIE tArget AEVICEoiiiiiiiiie ettt ettt s e e e beeennaeas

How to write information iNt0 the JEeVICE ..o e

HOW tO VErify ProgrammMiNg......o.uiiirieeiiii et ettt et e e e e eeens

HOow t0 save data t0 diSKooieeiiii e

MUt -Target Programming c..oee i eiee e e e e e e e e e e e e e et aaa e e e eaneeaaeeaaeenees

Part V Integration with NI LabVIEW

1 LabVIEW Integration Using Command LiNe.......ccciuriiiiiiiii e e e e 119
2 LabVIEW Integration USING ACl ...t e e e 122
Part VI Standalone Operation Mode 125
O Y=Y T PP 125
2 Switching to and from Standalone MOAE..........oiiiiiiiii e 125
3 Preparing Standalone Mode ProjeCtS.......oivuiiiii e e 127
(D721 W OF=Tod 11 o R TSRO U RV OPP TP PP PP 127
ProjJeCtS @nd JODS ...ttt e nes 129
DEVICE SEIIAIZATION .ooutiiiiiiiiee ettt h et h e eh et e e bt e bt e bt e bt e bt et e ae e eab e b e nar e beeneeenes 129
Permissions and Setting lIMItS ..ottt 132
Standalone MO MONITOT. e e e e e e e e e e en e aneeens 133
Example of Setting Up Standalone MOdeccouiiiiiiiiiiiii e 135
Part VIl Software Development Kit (SDK) 146
I O I o] ¢ 4] o ToT g 1=] o1 £ TR 146
7 L o o A 1 147
3 Controlling Multiple Programmers Via ACHL........ooiiiiiiiii e 148
O O I U] ool (o] o I S PP UP PPN 148
T O IS] 1 ¥ o] (U] = PP 151
O o €= Y111 o] = TP PTPPT 152
A AN I =14 01 o1 = 5 154
Part VIII Scripting 156
1 SCIHIPLING OVBIVIEW. ..ottt ettt ettt et ettt et e et e e et e e e eeens 156
S gl o] (SRRt Lo 1 o] L= PO RTOU PRSPPI 156
TRE STATTUP SO TPt .. ittt et et e e e e e e eeens 157
U gL T Yo TS 1 oL €= PN 157
THE SCIIPt FIES DIAI0OG eeevieieeiieieiie ettt ettt ettt s e s bt e bt e bt et e abeesteeseesseesbeesbeenbeesbeenteenseanteennenns 158
THE US EF WINTOW .ottt ettt ettt ettt h e s bt e e bt et e bt en et enbeen et e seeem e e sbeesbeenbeesbeenteenneanteannenn 160
THE /O Stream WINGOWooceeiieieiee ettt b e et e s bt et e bt et et e esteeseeaseesbeesbeenbeesbeenteenneanneennenns 160
A B =Y o U Yo Lo T g Yo = NS 1 | 160

© 2017 Phyton, Inc. Microsystems and Development Tools

6 CPI2-B1 In-System Device Programmer

THE SCIIPT WINAOW .ottt ettt ettt e e a bt e et e e bt e e a bt e e bt e et e e e eab e e e beeebeeeenbeeeabeeabneenn 161
ST TU = g0 N KT o= PP 161
The AULOWALCNES PaNE..........cciiiiiiiiiiii s 162

The WatChes WINOGOW ... bbb s 162
The Display Watches OptioNS DIAlOQ.ccouueiiiiieiiieiiie ettt b e et eesab e e sbeeesbeeenane 163
The Add WALCKH DIAIOG ... et ettt ettt ettt a e e b ekt e s ab e e e b et e be e e snbeeebeeebeeenane 164

S 1ol g o] Al =] (o T PSPPI

LTI 1LY = o U OSSPSR

LTI =0 L1 T o LU SOt

BIOCK OPEIALIONS ..ottt bbbt h e he bbbt e bt e bt e bt bt e bt et et e naenbesb e bt et et e ebeeinea

Condensed Mode

Syntax Highlighting

Automatic Word COMPIETION ..ot bbb bbbt 169

The QUICK WALCN FUNCLION «.uiiiiie ittt ettt b ettt e st se e sse e sbeesbeenteesbeenteenseanneenne e 170

DIAIOGS oo e E e E b b L e E R R R R bbbt et et e e e b b be et e e in e 170
The Search fOr TEXE DIAIOG.ccviaiiriiiiiiti ittt se bbb 170
The RePIACE TEXE DIAIOGeetiriteiriiti ittt st s b bbbt se bbb bbb eaean 171
The Confirm RePIACE DIAIOG..........cciiriiiiiiiiiii et e bbb 172
The Multi-File Search RESUIS DIlOg..........cociiiiieiiii ittt 172
Search for Regular EXPIreSSIONScciiiiiiiiiiiiieieee sttt sttt 173
The Set/Retrieve BOOKMArK DIAlOGgS..........coiiiiiiieii ittt 173
The Condensed Mode SEtUP DIAI0J.cciiiriiiiii ittt bbb 174
The Display from Line NUMDEr DIAIOGcveiiiiiiiiiiie ittt 174

Part IX Reference

O oY g Y [T = Yo [PP

Error Load/ Save File
L oY Ao Lo L R Ty Y PRSP PPPRO
L o] T =T PO UURSPPPRO
Error coOmMmand-line OPTION .ottt sttt st e e et b e e sab e e sabe e ebee e sabeesabeeenneas 175
Error Program mMing OPTION ..ottt sttt et e et e e it e e sab e e e bt e e sabe e sabeeenbeeesabeesaneeenneas 176
Error DLL
Error USB
Error programmer NArAW AIre ...ttt et e bt e e s abe e sabe e e abe e e sabeesabeeanteeesabeesabeeanneas 177
L oL L N A=T o - PRSP PPPRO
L= oY aolo] oL 1o 0T =1 4 To] o N PRSP PPPRO
L oY o FoN ol PRSP PPPRO
L oY o] aT=T o] Qo Yo D QPP S PP
L o] a1 1 1 D PP PPPO
AVAVZ Ut o 11 0 o OO P TP OUPPTP

A g o === 0T TN

(O] o1=] = 14 [0] ¢ 1 T T ST TSP PO UPP U ROURPTRPPRN:
(O] o1=1 = 1o [1= TP OO T PO UPP U RTOTRPTRPPRN
Expression Examples ...

IS (ol a1 oY (1 Yo TR (=] (=1 (=1 o]

SCripting Language DES CIIPTION «.o.uiiiiiiiiii ittt sb et s bt e bt e bt e be e b e enbeenne st snee e 181
Difference Betw een Scripting and C LANGUAGES.cutriiiiiiieiiieriie sttt ettt sne et sne e 181
Scripting Language Syntax.

[0 127 PSP PPPUPPPTRN
(070 1910 7= o1 £ PP SPROPPPRN
[0 1=T 0111 =Y PSPPI
[Y Y=o o] o E PSSP PPPR

© 2017 Phyton, Inc. Microsystems and Development Tools

Contents 7

INEEOET CONSTANTS ...ttt e e e e e s e e e e e e e e e e st et e e sasn e e e e s nnneeeeennnneeeeannnes 184
LONG INTEYET CONSTANES ...ttt ettt a bt e ettt e e e sab e e eabe e ebe e e enbeesbeeebeeens 184
FlOAtiNg-POINt CONSTANTS.eiiiiii ittt et e st e et e e sab e e et e e e be e e nabeesbeeebneeas 185
CharaCter CONSTANES.......cuiiirieiieie ettt e e r e se e e r e e et e e s e s e nr e e sreenreenreenreennean 185

3 (gl R edo] 01 r= g1 =T PSP P R TRRPPPO 186
27] o 7= L= N Y 1= TSRO P PP OPPTOPPROE 186
(D21 o) VA (=] ([PSP PP UPPTOPPOE 186
OpErationS aNA EXPIrESSIONSeiiiuiieiiieiie ettt ettt se ettt be e e sab e e sab e e e abe e e aab e e sabeeanbeeeaneeesnneesnneas 187
Operand MetadeSIGNALION.eoiiieiiii ettt ettt e s bt e it e e sabe e e b e e nareesaneeannees 187

F N 4114100 (@ o LT = 110 L PSSP PRSPPI 188
ASSIGNIMENT OPEIALIONSee ittt ettt ettt bt e bt e e bt e e s a et e e bt e e abe e e eabe e e abeeeabeeesnneeeabeeesaneeanns 189
REIALION OPEIALIONS.teiiiie ettt b e bt eeh b e e e bt ebe e e eab e e eabe e et e e e sabeesbeeebeeens 191
[IoTo (o=@ o 1] =1 1o o TP UPROPRPPP 191
ATTAY OPEIALIONS. ...ttt ettt ettt ettt e bt e b et e ahb e e ettt e be e e e hb e e e bt e e be e e eabe e e beeeabeeeenneeeabeeennneennne 192

(=10 @] 01T =] PO P PP TP OPRTPPP 192
(@1 1= @ o T=T = 110 o LSOO U PRSPPI 194
Operation Execution PrioritieS and OFAET...........coouiiiiiiiiieiie ettt 194
OPErand EXECULION OFUETciuiiiiuiieiiie ettt ettt sttt ettt e st e eab e e st e e st e e eab e e sabeeenbeeennbeesateeennees 195
Arithmetic CONVErSIONS IN EXPrESSIONS........eiiiuiiiiiie ittt ettt ettt sbe e sneeennne 196

(O] 1=] = 1o =P RRPOPRRPPOE 196
(o] 00’2 V= Ta Lo g T=TS3 i To TSP UPROPPTPPP 197
(©]o1=T = 1o g F=1 o 1= PSP U PR PPPO 197
(@] 0o Jo 1] 1 1=l 0] 0= = Lo (PSP P PR PP 197

(070 =T = 1o gty d o (T 1] o] [PPSR U PSPPSR PPPO 197
OPEIALON BIEAK.......coueiiiiiieitie ettt ettt ettt a e s et e e et e e eab e e sab e e et e e nabe e st e ennees 198
(@]o1=T = 1o] @ @] 101U =PTSRS PP 198

(@ o1 = o] g = [o PP PPPRRN 199

(@ oT=T = (o] N © o) o PP PPPRRN 199
ConditioNal OPEratOr F-EISE..........ooiiieiiieiiie ettt sttt e annees 199
CYClE OPEIAtOr WHIIE...... .ttt sttt e it e st et e e nab e e st e e ennees 200
Cycle OPErator DO-WHIIEcouiiiiiieiie ettt ettt ettt et e e b e e st e e ennees 201
(ol LN @ o T=T = 1o gl o] (H PRSP RV PP 201

T 0T} 1o PP PP 202
FUNCHION DEFINILION. ... it nr e e enr e nneereenne s 202

LT a3 176 o I PP PR TR 203
THE MAIN FUNCHION. ...t e s r e re e r e e e s e s e e e nreenis 203

(D Yot o ([0 LS TSP P PP UPRTOPPOE 203
(272 C] o 1 1= PP UPROPPPPP 204

N >\ PSPPSR PP 204
Local Variable DefiNition ...t 204
Global Variable DEfinitioN............cvioiiiiie e 205
Variable INIGATZALION.oooiiii e e 205
EXternal ODJECt DESCIIPHION........iiieiiiii ettt ettt nbb e et e st e e e sateeennees 206
Directives of the Script LangUage PreprOCESSON.......couuiiiiiariiieeiieesteeesieee st et e ettt be e sbeeessbeeanbeeesineenane 206
Identifier Change (FAEFINE)ottt et et e eee s 207
INCIUSION Of FlIES (FNCIUAR)........eiieie ittt sbe e eee e 207
ConditioNal COMPIIALION.eiiiie ettt ettt e et e e 207
Predefined Symbols in the Script File COMPIIALION............oouiiiiii e 208
BUilt-IN FUNCLIONS DY GrOUP cooiiiiiiiiie ittt sttt rab e st e et e e san e sabeeennees 208
BUFfEr @CCESS TUNCHIONS.cuiiiiiiieice e enes 209
L= o S U o OO PR 209

LT =] 1= = PP PPPPRN 210
L= 1 1o o U PR TR 210

LTS (1Y (=01 PRSP RRPPPPPRN 210

© 2017 Phyton, Inc. Microsystems and Development Tools

CPI2-B1 In-System Device Programmer

L= Ao o OO PRP PR 211
[IoT=To | foTo = o o JE PP UPPPPP 211
Y 2=V o [| PP PP 211
Y0V o PP PR TR 212
(Rl or= o | foTo | =1 o F TSP OPPTPPP 212
SAVEDAIA o e 212
ST =T 1= 2 = PP PPPRRN 213
SEEDBVICE oottt reene s 213
ST Vo o PP PR 213
L= (1Y (=101 PRSP PPPPRN 214
SEIWOIT e ettt nr e r e s 214
Device programming control functions and VariabIEs................oouiiiiiiiiiiiiiii e 214
Function AlIProgOPtIONSDETAUIL............coiiiii e 215
LT aTe3 (1o g I =T ot U g Tox 1o o PP PP 215
FUNCHION GANGEXECULE. ...ttt ettt ettt et e e sab e e et e et e e sabeesbeeebneens 216
FUNCHION GANGGEIEITON ...ttt ettt a e ettt e e e ab e e et e e e be e e eabeesbeeeteeeas 216
FUNCHION GANGSLALUSeeieieeitie ettt ettt a e s bt e bt e e sab e e e be e e be e e enbeesbeeebeeeas 216
Function GangWaitCOMPIELE.eiiiieiiie ettt ettt e b be et e e e e e sbeeeeeeens 216
FuNction GetBadDEVICECOUNL............ciiiiieireire et nr e e reenn e neenne s 217
FUNCtion GetGOOADEVICECOUNL........cvieiiieriieeriee et sr e enre e sreenreenneenneenne s 217
FUNCLION GEtPrOGOPLIONBILS.......coitii ittt ettt e et e e e sbeeeeeeeas 217
Function GetProgOPLIONFIOALciiiiiie e ettt eeeee e 217
FUNCLION GEtPrOGOPLIONLIST.ciitiiiiit ettt et e et e e e sbeeeeeee s 217
FUNCLION GEtPrOGOPLIONLONG.citiiiiiieeitie ettt ettt e it e st et et e e eab e e sbeeebeeens 218
FUNCLION GEtPrOGOPLIONSIING. ...t eateteeit ettt ettt et e et e bt e sb e et e e e e e sbeeebeeens 218
FUNCHION MPIINTE ...ttt a et et e e e e ab e e et et et e e eabeeebeeebaeeas 218
FUNCHION OPENPIOJECL ... ei ittt ettt a ettt et e e eab e e et e e et e e eab e e sbeeebneens 218
Function ProgOptioNDEFAUIL.............ooiiiiie et 218
FUNCHION REAASNAUOW ATEA.......ciiiiiiieiiee ettt nre e e enr e nneene e e s 218
FUNCHION SEPrOGOPLIONeiiii ittt ettt a ettt e e eab e e eabe e e be e e eabeesbeeebneens 219
FUNCHION WITESNAOOW ATE&.......eeiiiirieieeie et nr e nn e nneenne s 219
Variable BIANKCNECK...........uiiiiiieiie ittt r e r e nesneenne e 220
Variable BUfferSEArTAGAL...........vo i nee 220
Variable ChECKSUIML.........oiiie ettt r e e enne e 220
Variable ChIPENGAGAN..........oo ettt st e ettt e bt sab e st e e nab e e sbeeebeee s 220
Variable ChIPSTArTAGUI........coiee ettt e bt e bt e sab e et e e e sabeesbeeeeeee s 220
Variable DEVICEBACNSIZEoiiiiiciei e e 220
Variable DIGIOGONEITONeiiiiee ittt ettt ettt e ettt e bb e e st e et e e e sb e e sab e e ebeeennbeesabeeebneens 221
Variable GANGIMIOTEcoouiii ittt ettt ettt hb e st e et et e ab e e sab e e et e e e nnbeenbeeebeee s 221
VariablE INSEITTEST ..o et e et esr e e r e e s r e e e e nesnneenne e 221
Variable LaStErrOrMESSAGE[. ..« uueerteeiiieeiiie ittt sttt ettt e tb e s b e et e e s sb e e sab e e e beeesnbeenbeeebeeens 221
Variable NUMSIEES.ooviiieiee et re et esre e r e e reeneenesnneenee e 221
Variable REVEISEBYIESOITEooiiiiiiieeitie ettt st e e b e b e e teee s 221
Variable SEriaINUMDET ..o e et nne 221
Variable SIGNATUIE ... ittt ettt et e s bt e et e e e bt e st e e et e e e nnbeesbeeebnee s 222
Variable Verify AFtEIrPrOGraM..... ..ottt e e sb e inee s 222
Variable Verify AFIEIREAM.oo ettt e e sb e ieee s 222
MathematiCal FUNCHIONSooriiii et e e e s nr e nreennes 222
StriNG OPEratioN FUNCHIONS.oiieiiiiie ettt sa et e e bt e s ab e e snte e e naeeesnneeanneas 223
Character Operation FUNCHIONS............oi i ettt e et e e nan e e saneeannees 224
Functions for file and direCtory OPEIAtiON............coiuiiiiiiiiii et 225
Stre@amM file FUNCHIONS ...t e e r e e e e e e e 226
Formatted iNPUt-OULPUL FUNCIIONSiiiiii et be e e ineenaee 227
Script File Manipulation FUNCHIONS...........uiiiiiiiiie ettt et e e sae e e snneesnnees 227

© 2017 Phyton, Inc. Microsystems and Development Tools

Contents 9

TEXE @AILON FUNCHIONS ...ttt ettt e e h bt e bt e ket e s ab e e e b e e e be e e enbeeebeeebeeenane 228
Debug Shell CONIOl FUNCHIONSeiiieieie ettt et e e s e e ebeeeaneennne 229
Window s operation functions and other system fuNCHONS............oooiiiiiiiiiii e 230
GraphiCal OUIPUL FUNCHIONS. ..ottt ettt rae e et e st e e nan e e snneeennees 231
/O Stream w iNdOW OPEration FUNCLIONS.........oiiiiiiiii ittt be e sine e 232
BVENT WAL FUNCHIONS ...ttt bbbt e b et ekt e e abe e e bt e e be e e esbeeebeeebneennne 232
Oher VarioUS FUNCLIONS.eiiiiieiieeiiie ettt a ettt ab e s h et e et e e eab e e s ab e e ente e e nnneeanneeenneas 233
BUilt-IN Variables DY GrOUP ..ooiiiiiiie ettt st e e e st e e et e e b e saneeennees 233
List of Built-in FUNCLIONS @nd Variablescooiiiiiiiiii e e 234
SCHIPLING FUNCHIONS ittt bbbt e b et e e b et e ea bt e e bt e ek et e e ab et e abe e e abeeeanbeeenneeenbneennns 241
L0 T [OOSR OP PO OUPPUPRN 241
R aTox (o] o I - L4 o TSRO PUP R UPPTOPPOE 242
R aTex o] o I o F= L L= PSP U PP UPRTOPPOE 242
R aTox o] o I A 0 F= 100 TSRO P PP UPPTOPPROE 242
a1t o] o I Y74 =SOSR PP UPPOPPOE 242
LR aTox o) o I (10 = SRR UPPOPPOE 243
FUNCEON _FUIPALN. ...ttt et b et e be e e st e e e beeebneeanne 243
R aTex (o] o I €= Ao o ISP UPRTOPPROE 243
LR aTex (o] o I o 011 XY 2SRRI OPPOPPROE 243
LR aTo1 (o] g I oL SR OUP PP UPPOPPOE 244
RT3 o] g I Voo = OO PP UPROPPOE 244
FUNCHON ACTVAIEVWINTOW ...ttt b ettt b et ekt esabe e e be e e be e e enbeeebeeebneennne 244
R aTex (o] gl (o] 21U (o] o NSO PUP R UPPTOPPROE 244
R aTe (o a1 [0 [= q o | SRR UPROPPROE 245
FUNCHON AGAWALCK ...ttt bttt e b et e be e e eab e e e bt e e be e e snbeeebeeebneennne 245
LR aTox o] a1 = RSP P U UPRTOPPOE 245
LR aTo3 (o] g I TS | o SRR UPROPPOE 246
R aTex (o] g I 7= Lo F SR OUP PR UPRTOPPROE 246
R aTe1 (o] g I (o) S SR U PP UPRTOPPROE 246
LR aTe3 (o] g I (o PSP PP UPPTOPPROE 246
FUNCHION BACKSPACE. ...ttt bt ettt et b et et e e eab e e e bt e e be e e esbeeebeeebeeenane 247
FUNCHION BIOCKBEGIN. ...ttt ettt ettt bt bt e e st e e bt e ekt e e eane e e abe e e beeeesbeeebeeebneennne 247
R aTet (o] gl =1 (o Te] (@] o)V A PSP PP UPROPPOE 247
FUNCHION BIOCKDEIELE. ... ittt b ettt e b et e ket et e e bt e e be e e enbeeebeeebneennne 247
R aTex (o] gl =1 (o Te] (= oo RSP P PP UPPTOPPROE 247
FUNCHION BIOCKFASTCOPY ...ttt ettt ettt ettt ettt bttt e b et ekt e e st e e bt e e ket e eabe e e bt e e beeeasbeeebeeebneenane 248
FUNCHION BIOCKIMIOVE.ottt ettt ettt e b e ekt e it e e bt e bt e e ea bt e e bt e e be e e enbeeebeeebneennne 248
FUNCHION BIOCKOFT ...ttt b e bt e st e b et et e e et e e bt e e beeeenbeeebeeebneennne 248
FUNCHION BIOCKPASTE. ...ttt ettt b ettt e bt e bt e be e e e s et e bt e e beeeenbeeebeeebneennne 248
FUNCEION CallLIDraryFUNCLION.eiiieieii ettt ettt et b et et e e s e e ebeeebeeenane 248
LR aTex (o] o I o] | SR OUP PP OPPOPPOE 248
LR aTex o] a1 o] oo [oS PUUP PP UPRTOPPROE 249
FUNCHION CRECKSUIM. ... ettt ettt h bbbt e bt e e it e e b et e ket e sabe e e bt e e beeeenbeeebeeebneennne 249
FUNCHION CRSIZE. ... ittt b e b e et b et e bt e e e ab et e bt e e be e e esbeeabeeebeeennne 249
FUNCHION ClEArAIBIEAKS.coiueie ittt b ettt b et e be e e sabe e e bt e e beeessbeeebeeebneennne 250
FUNCHON ClEAIBIEAKeitiieiiie ittt b ettt et e b et e be e e sab e e e bt e e be e e ssbeeebeeebneenane 250
FUNCEION ClearBrEakSRANGEii ittt b ettt e st e bt e e be e e ssbeeebeeebeeenane 250
FUNCHION CIEAIEIT. ... ettt ettt h et ekt b e e s bt e bt e ekt e e ean et e bt e e bt e e enbeeebeeebneennne 250
FUNCHON ClEANVVINTOW ...ttt ettt b e bt e ab e e bt e e ket e e st e e bt e e beeeenbeeebeeabneennne 251
LR aTex o] g I o] [1] = SRS U PP UPPOPPROE 251
FUNCHION ClOSEPTOJECTttt ettt b e bt e et e b et e ket e e st e e be e e beeeenbeeebeeebneennne 251
FUNCHION ClOSEWINTOW ...ttt ettt ettt b ettt e e e bt e e bt ekt e saa e e e bt e e beeeesbeeebeeebneannne 251
RT3 (o] o I o] o LSRR UPPTOPPROE 251
LT aTo 0] o I PP P PP UPRTOPPROE 252

© 2017 Phyton, Inc. Microsystems and Development Tools

10

CPI2-B1 In-System Device Programmer

R aTet (o] gl o] =T | SRR UPROPPROE 252
FUNCHION CIEAINEW ...ttt ettt h bbbt bt e e ab e e bt e ettt e eane e e bt e e beeeenbeeebeeebneannne 252
R aTe (o] gl o = 1= 1o o PP P PP UPPOPPOE 253
R aTo1 (o] o @0 £ @ = PP P PR UPPTOPPOE 254
LR aTox (o] o @ U {o] U | SO P PP UPRTOPPROE 254
FUNCHION TEIAY. ...ttt ettt et e b e bt e e bt bt e be e e e ab e e e bt e e beeeenbeeebeeebneannne 254
FUNCHION DEICNAT. ...ttt ettt ettt b e bt e e ab e e e be e e be e e eane e e bt e e beeeasbeeebeeebneennne 254
FUNCHION DEILINE. ... ettt ettt bt h bbbt e bt e e a bt e e b et e ket e eab e e e abe e e beeees b e e ebeeebeeannne 255
LR aTox (o ol [1 =TSP P T UP PP UPPOPPROE 255
FUNCHION DISPIAY TEXL ...ttt ettt bttt h et b e bt e b e e bt e e ket e eabe e e bt e e beeeanbeeebeeebneennne 255
FUNCHION DISPIAY TEXIF. ...ttt b ettt e b e b et e be e e eabe e e bt e e be e e ssbeeebeeebneennne 256
LR aTex (o] g I o T o I SRR PP TPPTOPPROE 256
LR aTex (o] 0 1o [o SRR PP UPPTOPPROE 256
LR aTex (o] 0 1o 1] o 22N P PP UPPTOPPOE 256
R aTex o] g I = [T] =TSP PP UPROPPRNE 257
LR aTe1 (o] g I =To) SO UUP PR UPPTOPPROE 257
LR aTo1 (o] g I = o) TSP P PP UPPOPPROE 257
LR aTox o] a1 = o | PSP P PP UPPTOPPOE 258
FUNCTION BXEC ...ttt ettt h ekttt b et e b et e eab e e bt e e be e e ea bt e e bt e e beeesnbeeebeeebneennne 258
FUNCHION BEXECIMENUL. ...ttt et h et h et b et e bt e e s bt e bt e ekt e e eabe e e bt e e bt e e esbeeebeeebneennne 258
R aTot o] g I =T oS o] o o A SRR PP OPPOPPROE 259
LR aTo1 (o] g I = | AU U PP UPRTOPPOE 259
FUNCHION BXIEPIOGIAMN. ...ttt ettt ettt bt e bt e e ab e e b et ekt e e e ane e e bt e e beeeasbeeebeeebneennne 260
LR aTo1 (o] g 1= q o PSP U PP UPRTOPPROE 260
LR aTo1 (o] g I = o SO P PP UPRTOPPOE 260
LR aTo1 (o] g = 1o TSP P PP TPRTOPPOE 260
FUNCHION FCIOSE ...ttt b e b e et b et e bt e eab e e e bt e e be e e enbeeebeeebneennne 260
R aTex (o] a8 o (o] o 1= o TSP P PP UPPOPPOE 261
LR aTe3 (o] g1 {=To) S TSP P PP TPPTOPPROE 262
R aTe1 (o] a1 {1 o] SRR PP OPRTOPPROE 262
FUNCHION FFIUS. ... bttt b et ettt e et e e bt e e be e e ssbeeebeeebneenane 262
LR aTo1 (o] 0 o 1= (oS P O P PP OO RTOPPROE 262
LR aTo1 (o] 0 o 1= TSRO P PP UPPTOPPOE 263
FUNCHON FIECNANGEA. ... ittt bbbt e b et e be e e et e e bt e e be e e snbeeebeeebneennne 263
FUNCHON FIRIBNGN. ...ttt b et b et e et b e e be e e ssb e e abeeebeeennne 263
LR aTex (o] o I 11T o T N PSP P PP TPRTOPPOE 263
FUNCHION FlIRECT...... .ttt ettt e b e b et e e ab e e bt e e ket e ea b e e e bt e e beeeenbeeebeeebneannne 264
FUNCHION FINAFIEST. ...ttt et b et e b et e et e e bt e e be e e enbeeebeeebneennne 264
LR aTex (o] oI 10 o g1 OO P PP UPRTOPPROE 264
FUNCHON FINAWINGOW ...ttt et b e bt et e bt ettt e e s e e e bt e e beeeenbeeebeeebneennne 265
FUNCHION FIFSTVWOTT. ...ttt bbbt e et b et ekt e et e e bt e e be e e enbeeebeeebneennne 265
FUNCHION FIOBIEXPY ...ttt bbbt e b et ekt e et e e bt e e be e e esbeeebeeebneennne 265
LR aTex (o] a1 (oo SO TSP P PP UPPOPPROE 265
LR aTex (o] 0 1 1'0 o H PP U PP UPPTOPPOE 266
LR aTex (o] g I 0 IS] o] | A TSP P PP OPRTOPPROE 266
LR aTex (o] g Fo] o1=T o PSP PP UPPOPPROE 266
FUNCEON FOPW aIATIIl. ... bttt bt ekt e et e e be e e bt e e esbeeebeeebneenane 267
FUNCEION FOrW @rATIINOL. ...ttt bbbttt e e s e e e be e et e e snbeeebeeebneenane 267
LR aTex (o] a1 o 01 1 PSP P PP UPRTOPPOE 267
LR aTo1 (0] 0 I o 11 | (oS P U PUP R UPPOPPOE 268
LR aTo1 (o] 0 I 01U | TSRO P PP OPPTOPPOE 268
FUNCHION FFAMERECT.ttt b e bt e e e bt e e bt e eab e e e bt e e be e e snbeeebeeebneennne 268
LR aTex (o] g I (== Vo SRR UPPTOPPROE 269
FUNCHION FFEELIDIAIY.ei ittt ettt b et e be e e st e e bt e e be e e esbeeebeeenbneenane 269

© 2017 Phyton, Inc. Microsystems and Development Tools

Contents 11

R aTex (o] a1 {f=To] o 1= o N SRR PP UPPOPPROE 269
LR aTot (o] g I £ (=] o TSRO P PP OPPOPPOE 270
FUNCHION FSCANT.....ceeiee ettt e e e s nr e e enes 270
FUNCHION FSEEK.....e ettt et e e s re e s reenreenes 271
FUNCHION TLEIL. ...t e s r e nme e r e e nreennes 271
FUNCHION W FIEE. ...ttt et e s e nme e r e nreennes 272
FUNCHION GEIBYTE ...ttt ettt ettt a bbbt e bt e e s bt e e bt e e be e e eane e e bt e e beeeesbeeebeeebneennne 272
LR aTex (o] a1 1= (o SRR UPRTOPPOE 272
FUNCHION GELCUITIN. ...ttt b e bt e ab e e bt e ekt e esan e e e bt e e beeeenbeeebeeebneennne 273
FUNCHION GEBLCW ...ttt e b e b e e s bt e e b et e ket e e s e e e bt e e be e e enbeeebeeenneannne 273
FUNCHION GELALE........ce ettt ettt b e bt e e s bt e e b et e ket e e ab e e e bt e e beeeenbeeebeeebneannne 273
FUNCHION GELAFTEE. ...ttt bttt e et b et e be e e e st e e bt e e be e e enb e e ebeeebneennne 274
FUNCHION GELAISK(). .ttt b e bt e e bt e b et ekt e e e st e e bt e e beeeesbeeebeeenneennne 274
R aTex (o] gl 1= (=T 0 |V SRR UPROPPROE 274
FUNCHION GEEFIIENAIME ...t e s nr e nreenis 274
FUNCHION GELFHIME. ...ttt b e bttt e bt e ettt e e s et e bt e e be e e esbeeebeeebneennne 275
FUNCHION GEILINE......eeeiee et r et s e nme e r e nneenreenreennis 275
FUNCHION GEIMAK. ...t r et et en s e nme e r e nmeenreenreenis 275
FUNCHION GELIMEIMOIY ...ttt ettt ettt ekt h et e b e be e e ab e e bt e e ket e eabe e e bt e e bt e e enbeeebeeebneennne 276
FUNCHION GEtSCIIPLRIENAITIE. ...ttt bbbt e et be e e be e e ssb e e abeeenbeeenane 276
FUNCHION GBLIME. ...ttt h bbbt e bt e e ab e e e bt e e be e e eabe e e bt e e beeeenbeeebeeebneennne 276
LR aTex (o] gl 1= A SRR PR UPRTOPPOE 277
FUNCEION GEtWINAOW HEIGNL ...ttt e e b e e eneennee 277
FUNCtion GEetWINAOW WIOLNoiiiiiee et 277
FUNCHION GEIWOIA. ... ettt et e e esen e s e e r e nme e n e nreennes 278
FUNCHION GEIWOIA. ... ettt et e e esen e s e e r e nme e n e nreennes 278
LT a o] (1o g I €T0] (6) PRSP 278
LR aTot o] gl A5 =T o I SRR PP UPPTOPPOE 278
LR aTex (o] o I 0T o o] o AU P PP UPRTOPPOE 279
LR aTex (o] oI gT o o] 1 o SRR UPPOPPOE 279
LR aTex o] g I 10 S o 1T o A OO P PP UPPTOPPROE 279
FUNCHION INVEITRECT. ...ttt enme e enre e reenneenis 279
FUNCHION ISAINUIM. ... et et e s e s e nme e reenme e reenreennis 280
LR aTet (o] g I Y= 1/ o] o F- VOO P U P PP UPPTOPPROE 280
FUNCHION ISBSCll .ttt r et et e e s e s e nme e reenmeenreenreennes 280
LR aTot o] g I Y= 1LY P PP TPPTOPPOE 280
FUNCHION ISCNEIL....e ettt et s e s r e smeenreenreenas 281
LR aTex (o] g I Yo [| PSP PP TPPTOPPOE 281
R aTet (o] gl Yo =T o] NP P PP UPPTOPPOE 281
FUNCHION ISIOW € ... et r et e e s e nme e r e e nme e reenreenns 281
LR aTex (o] g I o | A SRR UPPOPPOE 282
LR aTox o] g I o 10 o [ox A TSRO P PP POPPOE 282
R aTot o] g I Y=Y o - Lo SRR UPPOPPROE 282
LR aTex (o] g I YU o] o 1= PSP PP UPROPPOE 282
LR aToa (o] g I Yo [To | SRR P UPRTOPPOE 283
U0} (1o 1 (o = PRSP 283
FUNCHION LASTCNAN. ... ettt er e s s e nme e reenneenreenreennis 283
FUNCHION LASTEVENT.......eciiiiiiecee ettt et e s s e nme e reenneenreenneennes 283
FUNCEION LaSTEVENTING{L... 4T . ettt ettt e st b et e be e e ssb e e ebeeebneenane 284
R aTet o] g I = 1] 5] o TR SRR PP UPRTOPPOE 284
FUNCHION LINETO. ...ttt r e r et e e e e e e s e s e nme e e reenneenreenreennes 284
R aTex o] g I o T=To | B =TSy (o] o SRR UPROPPOE 285
U] 1o = SRR PR TR 285
R aTex o] g I o= Yo | Il o] =1 o VTSP P PP RUPPTOPPOE 285

© 2017 Phyton, Inc. Microsystems and Development Tools

11

12

CPI2-B1 In-System Device Programmer

R aTex o] g I o T=To (@] o] 7o o F SRR TPPOPPROE 285
R aTex (o] g I o T=To | foTo | =T o o KPP PP UPPOPPOE 285
R aTex o] g I o T=To | £o]=To] SRR PP UPPOPPROE 286
LR aTex o] o (o Yot ([To SRR UPRTOPPOE 286
LR aTex (o] o (oo PSP P PP UPPOPPOE 287
LR aTex (o] o (oo O TSP P PP UPPOPPROE 287
FUNCHION ISEEK.......ceeeeee ettt s s e s r e nmeenreenreennis 287
T aTo] (1o I (o PP 288
FUNCHION MBXADAN. ... et r e r et e r e e e s e s e nme e r e nmeenreenneennes 288
R aTex (o] gl 00'<T 00 oXod o) SRR UPPOPPOE 288
LT aTed (1o T I 4 0'=T 1 1'e] o PRSP 288
R aTex (o] ol 010'=T00 o1 11'o HU SRR PP OPPOPPROE 289
R aTox (o] ol 110'=T010 o4) V2SR P PP UPPOPPROE 289
R aTex (o] ol 00'<T 01 Tod 11 JEU SRR OPRTOPPOE 289
FUNCHION MEMIMOVE ...ttt r e r et et e e e s e e e nme e reenmeenreenreenris 290
FUNCHION MEMSEL......ceiiiiiiei e r e r e et e r e e e e s e s e nme e neenmeenreenreennis 290
FUNCHION MESSAUEBOX ...ttt ittt ettt b ettt b et e b et e e ab e e e bt e e ket e eabe e e be e e beeeenbeeebeeebneennne 290
FUNCHION MESSAUEBOXEX ..ottt ettt b ettt et e b et be e e e st e bt e e be e e esbeeebeeebneennne 291
FUNCHON MINAGUT ... et r e et e e e e e s s e e nme e s reenmeenreenreenns 291
FUNCHION MKAIN ... r et r et e e et e s e s e nme s r e nneenreenneenns 291
FUNCHION IMOVETO. ...ttt m e r e et et e e s e nme e r e nreenr e nreennis 292
FUNCHION MOVEWINTOWviiiiiieeeieitee ettt et e s s e nme e r e nneenr e nreennes 292
FUNCHION MOVITIEIM. ...ttt e s r et r et e e e e e e s mn e seeenmeenneenmeenreenreennis 292
LR aTex (o] a1 o] o= o H PSP P UP R UPPOPPOE 293
FUNCtIoN OPENEAILONVVINGOWo.viiiieieiiie ettt bttt b ettt e st ebe e e be e e ssbeeebeeeabneennne 293
FUNCLION OPENSErEAMWWINTOWeiiieiiiiie ittt b e bt e st e e bt e e beeessbeeabeeeabneenane 294
FUNCEION OPENUSEIWINAOW ...ttt bttt et b et ettt e st e e be e e be e e anbeeebeeebneennne 294
FUNCHION OPENWINTOW ...ttt ettt ettt b et ekt e e ab e e bt e e ket e eane e e bt e e beeeesbeeebeeebneennne 294
LR aTex (o] g I o U 1 oo] o FH PSP OPROPPROE 295
FUNCHION OULPOID. ...ttt b et ettt e et e b et e be e e enb e e ebeeebneennne 295
FUNCHION PEEK ...ttt ettt b e bt e a bt e e bt e e ket e eab et e bt e e beeeesbeeebeeebneanane 295
FUNCHION PEEKD. ...ttt b e b e e b e e bt e bt e e sabe e e bt e e be e e snbeeebeeenneennee 295
LR aTex (o] gl oTo] (=TSP PP UPRTOPPROE 296
FUNCHION POKED. ...ttt e b e b e e a bt e e bt e ekt e e eaa e e e bt e e beeeenbeeebeeebneennne 296
FUNCHION POIYIINE. ...ttt bbbt b et e bt e s bt e e bt e e be e e snbeeebeeebneennne 296
LR aTex (o] o I oo 1Y PSP PP TPPTOPPOE 296
LR aTex (o] g oo 1Y O TSRO P U UPPTOPPROE 297
LR aTex (o] oI o] 101 1 S SRR TPRTOPPOE 297
printf CoNVErsion TYPE CharaClerScoiuiiiiiie ittt sttt e e 298
PrINtF FIAg CharACEIS. ... eiiiiie ettt ra bttt e bt erab e e sab e e et e e nabeesateeennnes 299
printf Format Specifier CONVENTIONSc..uiiiiie it saee e 299
90€ OF YOE CONVEISIONS.oouviiiriiiieiiee ettt r et eame e nreesreenreenreenne s 299

QBT CONVEISIONS ...ttt ettt e st e e r e et e r e e et e e e e sseeene e nreenreenreenreenne s 299

900 OF Y0G CONVEISIONS.coutieiiiieeitie ettt ettt ettt ettt et e e b et e she e e sh e e e e ahe e e aae e e aabeeeabeeeabeeesaeeeanbeeeanneessneeanns 300

YOX OF Y0X CONVEISIONS ...t ee sttt r e e esr e reer e et e e e e e s e ame e sreenreenreenreenneas 300
Alternate FOrms for printf CONVEISION...........oiiuiiiiii et 300

Printf FOIMAL SPECIFIEISee ittt et e e st e b e e nab e e st e e ennees 300
PNt FOIMAL SEFING ...ttt ettt eab e st e sttt e rab e e sab e e et e e naneesnbeeennees 301
Printf INPUL-SIZE MOGIFIEISottt ettt e e e st e ennees 301
Printf PreCiSION SPECITIEIS.ei ittt et sab e e et e st e e annees 302
Printf WIAth SPECITIEIS ...ttt e et e st e eanees 303

R aTex (o] gl 1Yo o | PSP PP OPPOPPROE 303
LR aTex (o] o I o 11 | (oS P U P PP OPPOPPROE 304
LR aTex (o] g I o1V 1 (=] 0 |V SRR TPROPPROE 305

© 2017 Phyton, Inc. Microsystems and Development Tools

Contents 13

LR aTex (o] o o 11 |11 SRR UPPOPPOE 305
LR aTex (o] a1 = 1o [0 IO SRR PR UPPTOPPROE 305
R aTex (o] gl = o o o] 1 FOU SRR PP UPRTOPPROE 305
FUNCHION FANAOIMIZE.ottt ettt e b e bt e s bt e e bt e e ket e e abe e e bt e e beeeesbeeebeeebneannne 305
LR aTex (o] g I {7 o IO PP P PP UPPOPPOE 306
FUNCHION RECTANGIE ... ettt b e b e e bt e bt e et e e e ab e e e bt e e be e e enbeeebeeebneennne 306
FUNCHION REAIAW SCIEEN......eiitii ittt ettt ettt bbbt e e e s bt e e be e e be e e eabe e e bt e e beeeesbeeebeeebneennne 306
el o gl R (o T Lo oo | =Ty o SRR UPRTOPPOE 307
FUNCHION REMOVEBULIONS. ...ttt ettt b ettt e e bt e et e e ssb e e e beeenbneenane 307
R aTe (o] gl £ =T P 1 = S SR UU PP TPRTOPPOE 307
R aTex (o] g I £V oo OO P O P U UPRTOPPOE 307
FUNCHION RIGNL.......coe ettt b e b e e bt e bt e e be e e e ab e e e bt e e be e e enbeeebeeebneenane 308
LR aTox (o] a1 1 4'e [PSP PP UPPTOPPROE 308
FUNCHION SAVEDALAL ... et ettt ettt ettt e b e b et e e ab e e bt e e ket e eabe e e bt e e beeeasbeeebeeebneennne 308
FUNCHION SAVEDESKIOP. ...ttt ittt ettt ettt ettt e b e e bt e e s bt e b et e ket e eane e e bt e e beeeenbeeebeeebneennne 309
FUNCHION SAVEHRIIE. ...ttt bttt e b et e bt e s ab e e e bt e e be e e enbeeebeeebneennne 309
FUNCHION SAVEOPLIONS.c.eeieiieie ittt ettt ettt e b e bt e e ea bt e e bt e e ket e eane e e bt e e beeeanbeeebeeebneennne 309
FUNCHION SCANT ...ttt b e b e e s bt e e bt e e be e e e ab e e e bt e e baeeesbeeebeeebneennne 309
R aToa (o] g IS T of o H TSP P PP UPPTOPPOE 310
FUNCHION SEAICRPALN. ..ottt b ettt b e e be e e ssb e e ebeeebeeenane 311
FUNCHION SEAICNREPIACE. ... ittt s e e be e e be e e ssbeeebeeenbneennne 311
FUNCHION SEIBCTBIUSH......coueiiiiie ettt bttt bt ekt e eab e e e bt e e be e e ssbeeebeeebeeennne 311
FUNCHION SEIBCTFONT..... .ttt b e bt e et e bt e e ket e e abe e e bt e e beeesnbeeebeeebneennne 311
FUNCHION SEIBCEPEN ...ttt b e b e et b et e bt e e e ab e e e bt e e beeeenbeeebeeebneannne 312
FUNCHION SEEBKCOIOT. ... ettt ettt ettt b e bt e e s bt e b et ekt e eane e e be e e beeeesbeeebeeebneennne 312
FUNCHION SEEBKIMOUE ...ttt ettt et e b et bt e e s bt e e bt e ket e e aae e e bt e e beeessbeeebeeebneennne 312
FUNCHION SEEBIEAK ...t ettt ettt ettt ettt b et e bt e bt e e ab e e e b et ettt e sane e e bt e e beeesnbeeebeeenneennne 313
FUNCHION SEBrEAKSIRANGE ... eeiitieeitei ettt bttt et e b et et e e s bt e e bt e e be e e ssbeeebeeebneennne 313
FUNCHION SEEBYTE.......co ittt ettt ettt ettt e b et e b et e e s bt e e bt e e ket e eane e e bt e e beeeesbeeebeeebneennne 313
R aTo (o] g IS T (@= o] 1o FO PP P PP UPPOPPOE 313
FUNCHION SEEISK.......eee ittt ettt b e b e e ab et e b et e ket e eabe e e bt e e beeeenbeeebeeebneennne 313
FUNCHION SEEDW OF ...ttt ettt ettt a bbbt bt e e e ab e e e bt e e ke e e eabe e e be e e beeeenbeeebeeebneennne 314
FUNCHION SELRIENAITIE. ...ttt bttt et e bt et et e s bt e e bt e e beeesnbeeebeeebneennne 314
FUNCHION SELFHIME. ...ttt b e b e e bt e e bt ettt e e ab e e e bt e e beeeanbeeebeeebneennne 314
FUNCHION SEEMATK ...t b ettt b et e b et e et e e bt e e be e e snbeeebeeebneeanne 315
FUNCHION SELMEIML. ...ttt ettt et b e e bt e bt e e e s bt e e bt e e be e e eabe e e bt e e beeeasbeeebeeebneennne 315
FUNCHION SEEMEITIONY ...ttt ettt ettt e b et e b et e e s bt e e bt e e ket e e an e e e bt e e beeeasbeeebeeebneennne 315
FUNCHION SELMOTE. ...ttt ettt et b e e bt b et e e s bt e e b et ekt e e e abe e e bt e e beeeesbeeebeeebneennne 315
FUNCHION SEEPIXEL. ...ttt b e b e et e b et e ket e eab e e e be e e be e e enbeeebeeebneennne 316
FUNCHION SEETEXICOION. ...ttt bttt b et ekt et e e bt e e be e e anbeeebeeebneenane 316
FUNCHION SEETOOIDAo ottt b et ettt e bt e bt e e be e e enbeeebeeebneennne 316
FUNCHION SELUPAIEMOE. ... ittt b ettt b et ekt e st e bt e e be e e ssb e e ebeeeaneennne 316
FUNCEION SEEWINAOW FONL.....oiiii ittt ettt b et bt e st e e bt e e be e e ssbeeebeeebneenane 317
FUNCHION SEIWINAOW SIZE.....coieiiieie ettt bttt b et ekt e e et e e bt e e be e e snbeeebeeebneenane 317
FUNCHION SEIWINAOW SIZET..... ittt b et e bt e e et e bt e e be e e ssbeeabeeebneennne 318
FUNCHION SEEWOIA.......ooueieeeii ettt ettt e b e b e e bt e e b et e ket e e an e e e bt e e beeeesbeeebeeenneennne 318
LT aTo3 0] 0 IR ISP P PP UPPTOPPOE 318
LR aTex (o] g IR o 01 TSP P PP OPPTOPPROE 318
LR aTe1 (o] g IR | SO SRR PP OPPTOPPOE 319
LR aTex (o] g IE] = o T PSP P OP R UPPOPPOE 319
FUNCHION SSCANT ...ttt e b e bt e e bt e bt e e be e e e aa e e e bt e e beeessbeeebeeebeeannne 319
LR aTot 0] IS 1= o PSP PP UPPOPPROE 320
LR aTo1 (0] g IS (o] o RSP P PP UPRTOPPOE 320
LR aTea (o] g IE] 1 0 o] o)A SRR UPPTOPPROE 320

© 2017 Phyton, Inc. Microsystems and Development Tools

13

14

CPI2-B1 In-System Device Programmer

R aTot o] g IE] 1o | PP PP UPRTOPPROE 320
LR aTo1 (o] g IE] (o] o SRR TPPTOPPOE 321
LR aTot (o] g IE] (o] 11/ TSP P U UPPTOPPOE 321
LR aTot (o] g IE] (o] 1o/ SRR UPPTOPPROE 321
LR aTox (o] g IE] (o] o)V TSP P PP OPPTOPPOE 321
LR aTo1 (o] g IE] 1€ o2~ o o TSRO P PR UPPOPPROE 322
R aTot (o] g IE] 14 (o] 1 o PSP PP UPPTOPPROE 322
LR aTo1 (o] g IE] 1 =T o SRR PR UPPOPPROE 322
LR aTo1 (0] IR 11 OO P PR UPPTOPPOE 322
LR aTo1 (0] g IR 1 [oF= | OO P PP UPRTOPPROE 323
LR aTot (o] g IE] 1 o] 1 o TSRO P PP UPRTOPPROE 323
FUNCHION STINMCITIDL. ...ttt ettt ettt bt e bt e e a bt e e b et ettt e eabe e e be e e ke e e es b e e ebeeebneennne 323
LR aTo1 (o] g IE] 1 o] o)V SRR PP UPPTOPPOE 324
LR aTot (o] g IE] 1 1o 0o PSP U P UP R OPROPPROE 324
LR aTo1 0] IR 1 Y= SO OO P PP UPPTOPPROE 324
R aTot (o] g IE] 1 o] o] SRR PP UPPTOPPROE 324
LR aTo1 (o] g IE] 1 (o]] CE SRR PP UPPOPPOE 325
LR aTot (o] g IE] 1 =2V PSP PP TP PTOPPOE 325
LR aTot 0] IR 1] = PSP P UP R UPPTOPPROE 325
LR aTot (0] g IE] 1 2] o o OO PUUP PP UPROPPOE 325
LR aTo1 0] IR 1 6] | TSP OUP PR UPPTOPPOE 326
LR aTo1 (0] IR 1 (o] SRR UPPOPPROE 326
LR aTo1 (o] g IE] 1 (o U | OO P U P PP UPROPPROE 327
LR aTot (o] g IE] (U o PSP PP UPPOPPOE 327
LR aTex (o] g I = ISP P U UPRTOPPOE 327
LR aTex (o] a1 = o | F TSP PR PP OPPTOPPOE 327
LR aTot (o] oI (| SRR PP UPROPPOE 328
FUNCEION TErMINALEAIISCIIDIS ...ttt be e e e bt e e be e e ssb e e ebeeebeeennne 328
FUNCHION TEIMINAIESCIIPL.ee ittt b ettt et e bt e be e e et e e bt e e beeesnbeeebeeebneennne 328
LT3 0] I = SRR OPPOPPROE 328
LR aTe1 o] g IR (o= K] of [SRR PP UPPOPPROE 329
LT3 (o] o I Ko) SO OUP PP UPPTOPPOE 329
LR aTex (o] a1 (o] [0V = SRR TPPTOPPOE 329
LR aTex (o] g IR (01N o] o 1= SO SRR OPPOPPOE 329
FUNCHION UIEOAL ...ttt e b e bt e e ab e e bt e e ket e e abe e e bt e e beeeesbeeebeeebneennne 329
FUNCHION UNIINKttt b e e be e e e ab e e bt e e ket e eane e e bt e e beeeesbeeebeeebneennne 330
FUNCHION UNIOCK. ...ttt ettt e b e bt e e s bt e be e e ket e e st e e be e e be e e esbeeebeeebneennne 330
LR aTex (o] o I o PP P PP UPPOPPOE 330
FUNCHION UPAAIEWINAOW ...ttt ettt bt bt et e e bt e e be e e ssbeeebeeebneennne 331
FUNCTION WWEIL. ...ttt h et b e bt e e a bt e e bt e et e e e ane e e abe e e beeeenbeeebeeebneannne 331
FUNCEION WaIEXPICNANGE. ...ttt b ettt e st e b e e be e e snbeeabeeenbneennne 331
FUNCHION WaIEX DI TIUE. ...ttt bbbt bt ekt e e e st e e bt e e be e e snbeeebeeebneennne 332
FUNCHION WaIEGEIMES SAQE. ... ettt ettt ettt ettt ettt b et ekt e e bt e bt ekt e e e st e e bt e e beeeenbeeebeeebneennne 332
FUNCHION WaIIMEMOIY ACCESS ...ttt ettt ettt ettt e b e b e e s bt e e bt e ket e eab e e e bt e e beeeenbeeebeeebneennne 332
FUNCHION WaILSENAMESSAGE ...ttt ettt b ettt e et e bt e be e e eabe e e be e e abeeessbeeebeeebneenane 333
FUNCHION WEIESTOP. ...ttt ettt et b e b e e sttt e bt e e ket e e abe e e abe e e be e e esbeeebeeebneennne 334
FUNCEION WaIWINAOW BEVENL.......ootiiiiiiieiie ettt b ettt e st bt e e be e e ssbeeebeeenbneennne 334
FUNCHION W GBICIEAN. ...ttt b et ettt e st e e bt e e be e e asbeeebeeenneennne 335
FUNCHION W GBTNEX ...ttt b e b et e e bt e bt e ekt e e e st e e bt e e ke e e esbeeebeeebneennne 335
FUNCHION W GBESTIING. ..ttt ettt ettt b ettt e e bt e e bt e ekt e e abe e e bt e e beeeanbeeebeeenneennne 336
FUNCEON WINAOW HOKEY ...ttt bbbt ettt et e be e et e e esb e e e beeebneennne 336
FUNCHON WOTALETL ...ttt bbbt bt et e e e st e e bt e e be e e anbeeebeeebneennne 336
FUNCHON WOTARIGNL ...ttt bt b e e it e b et e be e e e st e e bt e e be e e enbeeebeeebneennne 336
LR aTox (o] gAYV o 0 1 S SRR TPPTOPPOE 336

© 2017 Phyton, Inc. Microsystems and Development Tools

Contents 15

LR aTo1 (o] IV (=3 SRR UPPOPPROE
(0o PRSP PRSPPI
AV =T at= o] S 10 o Lo [PSP POUOURPUPRN
Variable APPINGME ... ettt ettt et e s h b e e bt ek et eehb e e e be e e be e e e b e e e be e e beeenane
Variable BIOCKCOIL.eiiiie ittt h ettt ettt et eehb e e ab et ettt e eab e e e abe e e be e e enbeeebeeebeeenane
Variable BIOCKCOIZ.........co ittt ettt e e h bt e bt e ket e s ab e e b et e be e e enbeeebeeebeeennne
Variable BlockLinel..
Variable BIOCKLINEZ.... ..ottt ettt et ettt e e h e e b et ettt e s ab e e e b e e e be e e enbeeebeeebeeenane
Variable BIOCKSEALUS.ootieiiei ettt ettt ettt eeh e e bt et e e e eab e e e b et e be e e enbeesbeeebeeenane
Variable CaSESENSIIIVE.oiieiiiiii ettt ettt sa b e e bt e ket e s ab e e e b e e e be e e enbeeebeeebeeennne
AV =T E= o] S U o PP OP P UUROURTPUPRN
Variable CurLine............
Variable DESKIOPINAME.ci ittt ettt ettt et et e e a e e b et e ket esab e e e be e e be e e enbeeebeeebeeenane

AV =T t= o] Sl =T o T JO PP OP P OUROUPTPUPRIN

Variable INSEITIMOUE. ...ttt ettt esh bt e bt e ekt e e s ab e e b e e e be e e enbeeebeeebeeennne

Variable LaStFOUNGSIINGccueiiiie ittt b ettt e st e bt e be e e snneeebeeebeeenane 340
Variable LaSTMEMACCAT. ..o ittt ettt ea e b ettt e e s ab e e e be e e be e e snbeeebeeebeeenane 340
Variable LastMEMACCAUAINSPACEcoiuiiiiii ettt ettt b et et sab e e bt e e be e e esbeeebeeenbeeenane 341
Variable LASTMEMACCLEN........ei ittt ettt e e h bt e bt et et e s ab e e b e e e be e e enbeesbeeebeeenane

Variable LastMemAccType.
Variable LasStMESSAGEINTttt ettt b ettt e e s ab e e e b e e be e e eab e e e be e e beeenaee
Variable LaStMESSAGELONG.ottt ettt ettt ea bt b et e be e e sab e e e be e e abe e e snb e e ebeeebeeenane
Variable MainWINAOW HANAIE...........oouiiiii et sttt e ib e beeenbaeenane
Variable NUMWWINGOW S.......oiiiiiiiiie ittt ettt ettt b et et e eea e e bt e bt e e ssb e e ebe e e be e e enbeeebeeebeeenane
Variable RegularExpressions....
Variable SEIBCIEASIIINGttt ettt b ettt e e s ib e e be e e be e e anbeeebeeebeeenane
VarTADIE SYSTEIMIDIN ... ittt ettt ettt et e e a b e e b et ekt e esab e e eb e e e beeeenbeeebeeebeeenane
Variable WRNOIEWOITS ..ottt ettt a bbb et e s hb e e b et e be e e snb e e ebeeebeeennne
Variable WINAOW HANGIESoouiiiiiie ettt s b et et e s e e e be e e beeenane
Variable WOrKFIEIAHEIGNE.o ottt b e et e s e s be e e beeenane
Variable WOrKFEIOWIOLN.ooe ettt b et et sib e e s be e e beeenane

4 ACI FUCHIONS AN SETUCTUINE S, . ouiteiei ittt et e e et et e e et e e et e et e e s aeanaaeanss

ACT FUCTIONS ottt bbbt bbb bbbt bbbt e e e b b e b e bt e bt e b s e b e b e b e e b e s bt e bt bt se e nes
@ - TU Vo o OSSPSR
ACEEXIl oot
A CT EITOISEING. ¢ttt sttt ettt b bt bt b e ek et e b b e s b e e bt s b b e kbbb e e e e e en e e bbb e
ACI_LoadConfigFile...
ACLSAVECONTIGFIIE......eeeiieieeet ettt b bt se b bbb b e eaeas
ACTLOBAPTOJECE ...ttt ettt b bbb bbb bbbt e et bbb h e an
AACT SEEDBVICE. ... teetee ittt ettt ettt a ekt b ettt a e st sR e E e eh R e e Rt e Ee bt n Rt Rt e en et R et Rt e be e et e beeteenreenee s
F O I T 1o =SSR
AC| _GetlLayer........
ACI_CreateBuffer.

F O == [ed 270 T OSSPSR
ACTREAULAYEN.......eeeieieeiteie ettt ettt ettt ettt b bbb it b e bbbt bbbttt a et b R bbb
A CT WIIEELAY ...ttt bbbt et b e b e s b s bt s bt bbb bt e e e e et b et b b
ACTFIIILAYET ...ttt ettt b bbb bbbt bbbt a e e e r bbbt
ACL_GetProgrammINgParaMS.ceuiiiiieiieiieiieie ettt sb e b bbbt et e et eb e b b e ebeebe e eaean 347
ACL_SetProgrammINGParaIMIScoiiiiiiiieieieie ettt bbbt bttt b e sa e et eb et ebeebe e eaean 348
ACT_ GEEPIOGOPLON. ... ettt ettt bbb bbb s bbbkt a e n e r bbb 348
ACT_SEIPTOGOPLION ...ttt sttt b bbb bbb bbbt e e e bbb 349
ACLAIIPrOgOPRLONSDEFAUIL........cviiiiitiitiitii ettt bbb 349
F O I = To] ¥] 1o o OSSPSR 350
F O S - U U o] 1o PSSR 350

© 2017 Phyton, Inc. Microsystems and Development Tools

16

CPI2-B1 In-System Device Programmer

AC

Index

F Y O I €7 1[0 5] r= T F OSSP OPRRPPOY 350
F Y O B T £ = LU PO RRPOPPRPPOY 351
ACLTErMINALEFUNCHION. ...ttt ettt ettt ettt e e e e a b e e b et e ket e sab e e aabeeebeeesnbeeebeeebeeenane 351
ACI_GangTermMINAEFUNCTIONoiitii ittt et b et e e e sab e e e be e e beeesnbeesbeeenbeeenane 351
ACTFIBLOAM.ttt ettt bbbk a e e bbb R bbbttt bbbt b ne e s 351
ACI_FIESAVE. ...ttt bttt b ekt a e bt bt e e h bt e bt b et e e ab e e be e e be e e anb e e e be e e beeenane 352
LY O ST 10T RS] 7= (o To PO OP P UUROUPPUPRN 352
ACI_SEIECIDEVICEDIAIOG.t eutet ettt ettt ettt ettt ettt e bt e bttt e e ea bt e e b et e be e e ssb e e e be e e be e e enb e e ebeeebeeenane 352
ACT_BUFFEISDIAIOY ..ttt ettt ettt ettt a e bttt e eh e e bt e bt e e eab e e e abe e e be e e enneeebeeebaeennne 352
LY O o z=To | 1= B = o o PP OP P UUOUPPPPRIN 354
ACT_SAVEFIEDIAIOG. ...ttt ettt ettt eh e bt b et e e ab e be e be e e e b e e e be e e beeenane 354
ACI_SErialiZAtIONDIAIOY et ettt ettt b ettt b et bt e nb e be e beeenane 355
F Y @ ST (@] [T=To3 1o T PP OP P OTROURPUPRN 355
F Y @ €T (@] 1= Ted (o] H PP OP PO OUPPUPRN 356
A CT_CONNECTIONSIALUS ...t ettt ettt ettt b ettt e e ab e e e bt e et et e ss bt e aab et e be e e sab e e eabeeebeeesnbeeebeeebeeenane 356
SEEUCTUTES it b e b e s b e s b e e e s a b e e s b e e s b e e s s h b e e s b e e st e e e sa b e e sab e e s nee e 356
L O I - TU g T I =T = 110 = PP OP P OUROUPPUPRN 356
L& I = o] 65 (g g [o T =T = 100 = T PSP P P OUOUPPPPRN 357
ACT BUFFEI_PAIAIMS ...ttt ettt et e e h b e e b et ekt e esab e e e b et e beeeenbeesbeeebeeenane 357
A CT_CONTIG_PAIAIMS ...ttt ettt ea e e bt e et et e ehb e e b et e be e e eab e e eabeeebeeeenbeeebeeebeeenane 359
A CT_PrOJECEPAIAMS ...ttt b et e b ettt eab e e bt e et et e eh bt e e bt e e b et e eab e e e b et e ket e e nb e e ebe e e beeenane 360
ACI_CONNECTION_PAFAITIS......eiteieiitee ettt ettt b ettt e e ab e bt e e be e e eab e e e b et e be e e sab e e ebeeebeeesnbeeebeeebeeenane 360
ACI_DEVICE _PAIAITIS ...ttt ettt b ettt e e a bt e e bt e et et e eh bt e e bt e e be e e sab e e e abeeebeeennbeeebeeebeeenane 360
F O I SR = U= 10 TSP OP P OUROUPTPPPRN 360
ACT_FUNCHON_PAFAMS. ...ttt ettt b ettt e e ab e e e bt e e be e e eab e e aab et e be e e asseeeabeeebeeeanbeeebeeebeeenane 362
J YO I €7 1o 5] r= T A = U= 100 S T PO RPSPPRPPOE 363
AC]_GaNgTEIMINALE_PArBMSc..veiitieiiteieiiiee ettt e et e bt e te e e aab e e e be e e be e e eab e e abeeebeeesabeeabeeeabeeessseseabeeenbeeennne 364
LY O - =T == 0 < PP TSRO PPRPPOE 364
LN O =T 0o VA =T 10 T PO T PR OPRRPPOY 366
ACI_PrOgOPLION_PAIAITIS.eiteiiiiiie ettt b ettt e bt e e b et be e ea bt e aab et ettt e sab e e ebeeebeeesnbeeeabeeebeeenane 366
ACI_Programming_PAramS.........c.uui ittt ettt b e e et et e sab e e b e et e e e aab e e be e abe e e anbe e e abeeereeenane 371
ACT PSEALUS_PA@ITIS.....cciiitiiii ittt e e et e e e s e e e s s b e e e e s s n e e e e e sne et e e e ssnn e e e e aanreeeesannneeeeannnreeenannres 373

376

© 2017 Phyton, Inc. Microsystems and Development Tools

Introduction 17

1 Introduction

PhytéGn

CPI2-B1

In-System Device Programmers

User's Guide

Copyright © 2017, Phyton, Inc. Microsystems and Development Tools, All rights reserved

1.1 Terminology

Terms used in the document

ISP or in-system
programming

Operations on device mounted on a board in user equipment. ICP is
performed Via a cable connecting programmer to the target either directly
or via needles or pogo contacts.

ICP orin-circuit
programming

Same as ISP abowe.

Mode of the in-system programming that is usually defined by the
programming signals wltage or the ISP interface (JTAG, SWD, UART,
SPI, etc.). Distinct ISP modes are enabled for different target devices and
more than one mode may exist for one device.

Target device or Target

A serial flash memory device, microcontroller or programmable logical
device having memory inside which can be programmed by an in-system
device programmer. In CPI2-B1 GUI device hames comprised of part
numbers (full or reduced) following types of ISP programming modes in []
brackets (for example: PIC10F200 [ISP HV Mode], M25P X80 [ISP Mode]).

DUT

Device Under Test - same as target device abowe.

Start and End Addresses
(of the Target device)

Physical memory range of target device to perform programming
operations (read, write, verify, etc.) on.

Programming Interface

On-device port that enables access to the internal memory that includes
but not limited to: SPI, 12C, JTAG, SWD, UART.

ISP Mode

Mode of the in-system programming. Distinct ISP modes are enabled for

© 2017 Phyton, Inc. Microsystems and Development Tools

18

CPI2-B1 In-System Device Programmer

different target devices and more than one mode may exist for one device.

ISP JTAG Mode

In-system programming using JTAG interface.

ISP SWD Mode In-system programming using SWD (single wire debugq) interface.

ISP EzPort Mode In-system programming using Freescale proprietary EzPort interface.

ISP HV Mode In-system programming that requires application of relatively high woltage
to the target device (12V for example).

File In the CPI2-B1 context the term file may represent: a) an image of

information on a PC hard drive or other media that is supposed to be
written into the target device’s physical memory, or b) an image fetched
from the target device and stored on the disk or other media. Files in
ChipProg can be read from and writted to a PC hard drive or CD.

Buffer or Memory buffer

Buffers are intermediate data holders between data in files and data in the
target device. A buffer is a portion of computer memory (RAM) used to
temporarily store, edit and display data to be written to the target device or|
read from the device. User can open any number of buffers of any size
only limited by available computer memory.

Buffer layer or sub-layer

A buffer may hold seweral layers (also known as sub-layers) that according
to architecture and memory model of a particular target device. For
example, for some microcontrollers one buffer can include the code and
data memory layers (see more details below).

Buffer size

Buffers size may vary from 128KB to 32GB.

Buffer start address

The address to display the buffer contents from.

Checksum

An arithmetic sum of all bytes of data in a specified part of buffer
calculated by programmer to ensure data integrity. The program has a
variety of algorithms for checksum calculation and allows writing the
checksum into a specified location of the target device.

Command Line mode

Method of controlling a CPI2-B1 in which the user issues commands to
the computer program in the form of successiwve lines of text (command
lines).

Standalone Operation
Mode

CPI2-B1 device programmer contains internal memory card that can hold
all information that the device programmer needs to run without further
interaction with a PC.

Project

An integrated set of information that completely describes the target
device, properties of data buffers, programming options and settings, list of|
source and destination files with their properties, etc. Each project with a
unigue name can be stored and promptly reloaded for immediate
execution. Usually user creates a project to work with one type of device.
Using projects saves a lot of time during initial configuration of programmer|
every time you start working with a new device.

© 2017 Phyton, Inc. Microsystems and Development Tools

Introduction 19

1.2

121

CPI2-B1 device programmer

ChipProg-ISP2 is a family of in-system device programmers produced by Phyton, Inc. Microsystems
and Dewvelopment Tools. This family currently represented by two models: a single-channel CPI12-B1
and CPI2-Gx gang device programmer.

CPI2-B1 device programmers are primarily intended for use in test fixtures for programming single
boards and multi-board panels. For this purpose multiple CPI12-B1 units can be driven from one computer
in the gang mode. This device programmer can be also used for engineering and field senice. The
programmer works under control of the ChipProg-02 software package. See a single CPI2-B1 and four
CPI2-B1 units mounted on a rail on the pictures below.

Features Overview

Features Overview

Programs devices with Vcc from 1.2V to 5.5V.

Supports JTAG, SWD, SPI, SCI, C, UART, and other interfaces.
Extremely fast.

Can program some devices at a long distance of up to 5m (~15ft).
Up to 72x CPI2-B1 units can be controlled by a single computer.
Each of ganged programmers works independently.

USB 2.0 High Speed and LAN 100 Mbit/s communication interfaces.
Opto-isolated RS-232 interface (optional).

ATE interface for stand-alone operations.

Each module has memory card that enables stand-alone operations.
Friendly intuitive graphical user interface (GUI).

© 2017 Phyton, Inc. Microsystems and Development Tools

20 CPI2-B1 In-System Device Programmer

Simplified graphical user interface for use by unskilled personnel.

Application Control Interface (ACI) provided by a DLL.

ACI enables control from programs in Visual Basic, C, C++, C#, etc.

ACI enables control from National Instrument® LabVIEW ™.

On-the-fly utility allows controlling already launched programmer.

Software includes scripting language.

Project files are protected against hackers and corruption.

Programmer kit includes a bracket for mounting on a standard DIN rail.

Clip-on compartment for a battery, LEDs and a button for standalone operations (optional).

1.2.2 Hardware characteristics

NOTE. Some of the features and items below may be unavailable by the moment of sale of your CPI2-B1
device programmer

Housing Options and Applications

e Palm-size unit in a plastic enclosure.

e User-configurable gang programming system comprised of single CPI2-B1 units mounted on a
standard DIN rail

e Hand-held battery-powered tool for in-field senice.

Extra Options and Ordering Codes

e CPI2-B1 - single-channel programmer with no galvanic isolation of control lines.

e CPI2-ISO - single-channel programmer with galvanic isolation of control lines and RS-232 interface.

e CPI2-BB — add-on compartment with Li-lon battery and controls for stand-alone operation.

¢ All above options include plastic brackets for mounting programmer units on a standard EN 50022
(TS35) 35 mm DIN rail.

Communication interfaces

e USB 2.0 High-speed.

e 100 Mbit/s Ethernet (LAN).

e RS-232C (with CPI2-ISO option only).

Powering the programmer

e From external power supply 5V/1A (not included).

e From PC USB port.

e Rechargeable Li-lon battery (with CPI2-BB option only).

Powering Targets from the Programmer
e When powered from an external power supply (5V@1A), provides the target equipment with the
wltages: Vcc (1.2 to 5.5V @ up to 350mA) and Vpp (1.2 to 15V @ up to 80mA).

Signals to/from the Target

e Ten input/output lines with logical levels 1.2 to 5.5V that can be individually programmed as TTL/
CMOS logic I/O.

e The signal lines above alternate with GND lines for stable programming via long cables.

e Two input/output lines which can be individually programmed as TTL logic I/Os, GNDs, Vcc or Vpp.

Control Methods

Start/Stop logic signal for external control.

Output signals for external control: BUSY, GOOD and ERROR.

Six logic inputs for choosing one of 64 preloaded projects.

One low-current output for setting that can be used for project selection code.

© 2017 Phyton, Inc. Microsystems and Development Tools

Introduction 21

One output signal for charging an add-on battery (CPI12-BB).
Three GND lines.

Dimensions

CPI2-B1 unit: 114 x 73 x 32 mm (~4.5 x 2.9 x 1.25 inch).
With CPI2-BB battery: 114 x 99 x 32 mm (~4.5 x 3.9 x 1.25 inch).

1.2.3 Software features

NOTE. Some of the features and items below may be unavailable by the moment of sale of your CPI2-B1
device programmer.

System Requirements

Microsoft® Windows™ 7, 8 or 10.

Software Features

Supports loading and saving files in all popular formats.

Unlimited number of data buffers can be open and maintained.

Enables arithmetic operations with data blocks in buffers.

Enables writing serial numbers, MAC addresses and other device-specific parameters into user-
selectable shadow areas of target devices.

Allows writing of user-defined signatures and data blocks into target devices.

Offers seweral algorithms for calculating checksums.

Special DLL for user-defined checksum calculation.

Writes programming session logs with real time stamps.

The GUI has a special editor for easy setting of device and algorithm parameters, such as fuses, lock
bits, boot loader vectors, etc.

Comprehensive self-test procedure.

Managing Projects and Configurations

The software supports unlimited number of projects.

Project files are protected against hackers and corruption.

The software ensures data integrity - every data transfer to/from a PC or ATE system or memory card

is accompanied with CRC sum.

The software allows storing and retrieving the state of user interface: configurations, colors, fonts, hot

keys and other settable preferences.

Battery powered option allows storing 4 projects on internal memory card; user-selectable by pressing
the button on battery compartment.

Computer Control Methods

From Automated Test Equipment (ATE), In-Circuit Test System (ICT), or programming fixtures.

From command line or via Application Control Interface (DLL).

Integration with National Instruments® LabVIEW™ software.

On-the-fly management utility allows control of already launched and running device programmer.
Built-in scripting language for writing user scripts. Auto programming can be started by closing fixture
lid or by connecting a device.

Friendly and intuitive graphical user interface (GUI) for creating and debugging projects.

Optional simplified user interface for unskilled personnel.

Standalone Control

The programmer can work in a standalone mode that does not require connection to a computer.
Up to 255 standalone projects can be stored on a built-in memory card.

© 2017 Phyton, Inc. Microsystems and Development Tools

22 CPI2-B1 In-System Device Programmer

e Any project can be launched by ATE signals or from a computer.
e Special utility allows monitoring standalone activity on a computer.

1.2.4 Connector TARGET

TARGET connector

The TARGET connector positioned on the front panel enables connecting a CPI2-B1 device programmer
to the target device by the 20-wire ribbon cable included in a CPI2-B1 kit. See here the connector pin
assignment and description of the signals in the matrix below.

CPI2-

#19

B1 TARGET connector

polarization notch v #1 +

Top

#20

#2

Pin#

Signal | Signal description — all signals are bidirectional

P1 Log 0/1, Vcc or GND

P11 Log 0/1, Vcc, Vpp or GND

P2 Log 0/1, Vcc or GND

GND Ground

P3 Log 0/1, Vcc or GND

GND Ground

P4 Log 0/1, Vcc or GND

GND Ground

Ol | N[ojJo MW]|DN

P5 Log 0/1, Vcc or GND

=
o

GND Ground

=
=

P6 Log 0/1, Vcc or GND

[EnN
N

GND Ground

=
w

P7 Log 0/1, Vcc or GND

H
~

GND Ground

=
(&)

P8 Log 0/1, Vcc or GND

=
(e}

GND Ground

=
~

P9 Log 0/1, Vcc or GND

=
(o]

GND Ground

=
©

P10 Log 0/1, Vcc or GND

N
o

P12 Log 0/1, Vcc, Vpp or GND

© 2017 Phyton, Inc. Microsystems and Development Tools

Introduction 23

125

e P1to P10 - logical signals formed by high-speed buffers that can output target-specific logic 0 or 1,
Vcc or GND lewels, according to the chosen target device type. These lines can output Vcc with levels
from 1.2 to 5.5V @ up to 350mA. The buffers are bidirectional, also sening as inputs when the CPI2-
B1 programmer reads data.

e P11, P12 - signals formed by high speed mixed-signal circuits that can also output target-specific
logic 0 or 1, Vcc or GND lewvels according to the type of the chosen target device. These lines can
output Vcc with levels from 1.2 to 5.5V @ up to 350mA. The mixed-signal buffers are bidirectional,
also sening as inputs when the CPI2-B1 programmer reads data. In addition, these two signals can
output Vpp wiltage with levels from 1.5V to 15V @ up to 100mA.

The P1...P12 signals are target-specific. A CPI2-B1 user must ensure that the target device (DUT) is
properly connected, according to the target-specific wiring diagram published on the http://phyton.com/

products/isp/chipprog-isp2-family/cpi2-bl-connecting web page. When programmer is controlled by
the GUI, the same diagram can be viewed in a browser by clicking the Connection to the target

device link in the Device Information window.

To “cut off” the target in the stand-by mode or after completion of any programming operation, CPI2-B1
programmer leaves the P1...P12 signals in high impedance state.

Connector CONTROL

CONTROL connector

The CONTROL connector positioned on the right side of the CPI2-B1 unit enables connecting the
programmer to Automated Test Equipment (ATE) or the fixture by the 20-wire ribbon cable. See here the
connector pin assignment and description of the signals in the matrix below. Since the programmer can
be optionally equipped with a CPI2-ISO 10 galvanic isolation board with RS232 interface, there are two
different diagrams shown below.

CPIZ—B1 CONTROL connector

#2 #20 +
Top

#1 A polarization notch #19

Variant WITHOUT optical isolation (CPI2-1SO is NOT installed inside of CPI12-B1)
Pin# Signal Type of Signal description — all signals are bidirectional
signal
1 GND Ground Ground
2 GND Ground Ground
3 PROJ_SELO < Input Project select 0; active log 1
4 START < Input Control signal that launches/stops programming; active: log O
5 PROJ_SEL1 < Input Project select 1; active: log 1
6 5V_CHARGE Output > 5V @ 500 mA sending to battery compartment for charging the

© 2017 Phyton, Inc. Microsystems and Development Tools

http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting
http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting

24

CPI2-B1 In-System Device Programmer

battery

7 PROJ_SEL2 < Input Project select 2; active: log 1

8 5V_IN < Input 5V input - either from external power supply or the CPI2-B1
battery

9 PROJ_SEL3 < Input Project select 3; active: log 1

10 5V_IN < Input 5V input - either from external power supply or the CPI2-B1
battery

11 | PROJ_SEL4 < Input Project select 4; active: log 1

12 GND Ground Ground

13 SAMODE < Input Standalone mode control; active: log 1

14 GND Ground Ground

15 ST_GOOD Output > Signal GOOD sent to ATE; active: log 0

16 GND Ground Ground

17 ST_BUSY Output > Signal BUSY sent to ATE; active: log O

18 NC Not connected [Not connected

19 ST_ERROR Output > Signal ERROR sent to ATE; active: log 0

20 NC Not connected [Not connected

PROJ_SELJ[4..0] — 5-hit selector for choosing one of 32 preloaded projects - the #0 project select code
is 000000, the #4 project - 000100;

ST_GOOD | ST_ERROR | ST_BUSY - programmer status lines; active status: log 0;

START - External signal launching and stopping the programmer; active status: log 0. If this signal
remains applied to this connector pin for longer than 2 sec it switches the programmer to the
Standalone Mode;

5V_CHARGE - +5V @ 500mA max signal that charges CPI2-BB battery. It can be used for powering
on the project selector;

5V_IN - 5V supplied either from an external power adapter plugged to the programmer or from a
stacked CPI2-BB compartment with a built-in battery or floating 0V if both external power adapter and
CPI2-BB compartment are not connected to the CPI2-B1 unit.

SAMODE - Standalone mode control; log 1 applied to this input at a moment of powering the
programmer on switches the programmer to the standalone mode.

Variant WITH optical isolation (CPI2-ISO is installed inside of CP12-B1)
Pin# Signal Type of Signal description — all signals are bidirectional
signal

1 NC Not connected [Not connected

2 NC Not connected [Not connected

3 PROJ_SELO < Input Optically isolated project select 0; active log 1

4 START < Input Optically isolated control signal that launches/stops

programming; active: log 0

© 2017 Phyton, Inc. Microsystems and Development Tools

Introduction 25

PROJ_SEL1 < Input Optically isolated project select 1; active: log 1

V_ISO Output > Optically isolated 5V @ 10 mA max

NC Not connected | Not connected

5
6
7 PROJ_SEL2 < Input Optically isolated project select 2; active: log 1
8
9

PROJ_SEL3 < Input Optically isolated project select 3; active: log 1

10 NC Not connected | Not connected

11 | PROJ_SEL4 < Input Optically isolated project select 4; active: log 1

12 GND Ground Optically isolated GND line

13 SAMODE < Input Standalone mode control; active: log 1

14 GND_ISO Ground Optically isolated GND line

15 ST_GOOD Output > Optically isolated signal GOOD sent to ATE; active: log 0
16 GND_ISO Ground Optically isolated GND line

17 ST _BUSY Output > Optically isolated signal BUSY sent to ATE; active: log O

18 RS232_TX Output > Data transmitted to computer

19 ST_ERROR Output > Optically isolated signal ERROR sent to ATE; active: log 0

20 RS232_RX < Input Not connected

e PROJ_SELJ4..0] — 5-hit selector for choosing one of 32 preloaded projects - the #0 project select code
is 000000, the #4 project - 000100;

e ST_GOOD | ST_ERROR | ST_BUSY - Optically isolated programmer status lines; active status: log 0;

e START - Optically isolated external signal launching and stopping the programmer; active status: log
0; If this signal remains applied to this connector pin for longer than 2 sec it switches the programmer
to the Standalone Mode;

e 5V_CHARGE +5V @ 500mA max signal that charges CPI2-BB battery. It can be used as a power
source for the project selector;

e 5V_IN — 5V supplied either from an external power adapter plugged to the programmer or from a
stacked CPI2-BB compartment with a built-in battery or floating 0V if both external power adapter and
CPI2-BB compartment are not connected to the CPI2-B1 unit.

e SAMODE - Standalone mode control; log 1 applied to this input at a moment of powering the
programmer on switches the programmer to the standalone mode.

1.2.6 Single- and Gang-programming control modes

ChipProg-02 software allows to drive CPI2-B1 device programmers in two different modes:

¢ Single-programming mode for programming one target device at a time by means of one CPI2-B1
programmer.

e Gang-programming mode for simultaneous programming of multiple devices by means of multiple
CPI2-B1 programmers driven from one PC. This mode is intended for mass production in test
fixtures or other ATE.

The programming mode is set in the Startup dialog by checking and unchecking the Gang Mode
checkbox.

© 2017 Phyton, Inc. Microsystems and Development Tools

CPI2-B1 In-System Device Programmer

The software enables control of one, specified by its serial number, CPI2-B1 device programmer within a
cluster of multiple programmers driven from one PC. This allows to switch between Single-
programming and Gang-programming modes of control.

Gang-programming mode differs from Single-programming mode in the following ways:

1. in the Gang-programming mode only same device type may be selected for all programmers
controlled by one copy of the ChipProg-02 program;

2. In the Gang-programming mode all programmers controlled by one copy of the ChipProg-02
program share the same data buffer;

3. Only the Auto Programming function can be performed by ChipProg-02 in the Gang-
programming mode. In order to execute one command only (for example, Erase, Read, Write,

etc.) it is necessary to modify a default set of Auto Programming commands by removing
unwanted commands and leaving a single one you need.

By running several copies of the ChipProg-02 software it is possible to control some CPI2-B1

programmers controlled from one computer in the Gang-programming mode and others in Single-
programming mode.

Read also about launching multiple CPI2-B1 programmers in the Gang-programming mode.

© 2017 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 27

2 Installation and Launching

This chapter covers the following topics.

How to install the CPI2-B1 hardware
How to install the ChipProg-02 software

How to launch the CPI2-B1 device programmer.

Itis highly recommended that before you start using the tool you read all basic topics in the chapters
Graphical User Interface and Operating ChipProg programmers of this manual.

Experience using MS Windows and familiarity with basic Windows operation are required.
2.1 Getting Assistance

Context-Sensitive CPI2-B1 Online Help

The ChipProg-02 software comes with a comprehensive context-sensitive on-line Help. To access it press
F1 key or use Help menu. Aimost every ChipProg-02 dialog, message box, and menu has a help item
associated with it; for the active dialog or menu it can be viewed by pressing F1.

In most cases you can find the necessary topic by searching for a keyword. For example, if you type "Verify"
in the first box of the Find tab, the third box will list topics related to the programming verification. Choose
appropriate topic from this listand press Display.

ACPI2-B1 PDF manual is also available.

Technical Support

For the length of a product’'s warranty period Phyton provides technical support free of charge. Although we
do our bestto clean up and improve our software, ChipProg-02 software may contain minor bugs and
some programming algorithms may not be stable on some of recently supported devices. We kindly ask
you to report bugs when you get an error message or have a problem with programming a particular device
or devices. We are committed to promptly checking your information and fixing discovered bugs.

To minimize difficulties using ChipProg-02 itis highlyrecommended to get familiar with the manual before
using the programmer. The ChipProg-02 - user interface is quite friendly and intuitive; however, itincludes
some specific functions and controls that a user should learn about.

Before Contacting Phyton

e Make sure you use the latest ChipProg-02 version which is always available as free download from the

http://phyton.com/support/updates.
e Make sure the detected error is reproducible under the same conditions and is not a casual glitch.

When Contacting Us

Please provide the following information to our technical support specialists.

* Your name, the name of your company, your contact phone, and your e-mail address.

e The CPI2-B1 serial number that can be found in the About information box or on a sticker on the CPI2-B1
bottom shell.

e Software version number taken from the About information box.

e The targetdevice or DUT's part number.

© 2017 Phyton, Inc. Microsystems and Development Tools

http://phyton.com/support/updates

28 CPI2-B1 In-System Device Programmer

e Basic parameters of your computer and operating system.
e Descriptions of detected errors, relevant bug reports and error screen shots.

Please send your requests or questions to support@phyton.com. This is the easiest wayto get
professional help quickly.

Contact Information

Phyton Inc., Microsystems and Development Tools

6701 Bay Parkway, Ste 3M-2
Brooklyn, New York 11204
USA

Web address: www.phyton.com
E-mail contacts:

General inquiry: info@phyton.com
Sales: sales @phyton.com

Technical Support: support@phyton.com
Tel: 1-718-259-3191

Fax: 1-718-259-1539

2.2 Hardware installation

Three connectors are situated on a rear panel of the CPI2-B1 unit: USB and Ethernet communication
ports and 5V coaxial power socket. See the picture below:

Powering the programmer

A power adapter is not included into the CPI2-B1 kit. To power a CPI2-B1 device programmer use any
regulated 5V/500mA+ adapter (2.1 mm, center positive). If the CPI2-B1 is controlled via a USB 2.0 port
then it may get enough power via a USB port and therefore powering the programmer from an external
supply is not a mandatory. However, powering the programmer from an external 5V power adapter
insures more stable programming operations. Driving a CPI2-B1 device programmer via Ethernet (LAN)
port always require use of an external 5V power supply.

Connecting to a computer

In case of driving a CPI2-B1 device programmer via USB it is recommended to connect the

© 2017 Phyton, Inc. Microsystems and Development Tools

mailto:support@phyton.com
http://www.phyton.com
mailto:info@phyton.com
mailto:sales@phyton.com
mailto:support@phyton.com

Installation and Launching 29

programmer directly to a USB port on a computer main unit and do not use USB hubs. In case of
controlling multiple CPI2-B1 device programmers Via USB ports and use of one or more USB hubs
these hubs should be powered. It is not allowed to use passive USB hubs.

Connecting to the target

See a picture of the CPI12-B1 TARGET connector below:

TAEGET
1]

T

A ribbon cable with both-end mounted 20-pin headers are included in the CPI2-B1 kit. This cable is
intended for connecting
a CPI2-B1 device programmer to the target device (board) or a test fixture in accordance to the device-

specific connection diagram published on the http://phyton.com/products/isp/chipprog-isp2-family/
cpi2-bl-connecting web page. Refer to the Connector TARGET pinout.

Grounding

Each IO signal wire in the ribbon cable alternates with ground wires. There are as many as 8 wires
connected to the ground point inside of the CPI2-B1 device programmer unit. To insure stable
programming operations it is extremely important to bring all 8 ground wires (GND) from the
programmer's TARGET connector to the GND points on the target board. Do not join these GND wires
in a single wire - this may cause programmer crashes!

Connecting to ATE controls

See a picture of the CPI12-B1 CONTROL connector below:

CONTROL 43

(51}

To control a CPI2-B1 device programmer from your test fixture or other ATE use the CONTROL port.
The CPI2-B1 kit does not includes a cable with a 20-pin header to connect this port. Refer to the
CONTROL connector pinout to make a custom connection to the ATE.

Mechanical mounting
CPI2-B1 device programmers kits include plastic brackets for mounting programmer units on a

standard 35 mm DIN rail. Use these brackets for mounting multiple device programmers. See the
picture below:

© 2017 Phyton, Inc. Microsystems and Development Tools

http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting
http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting

30 CPI2-B1 In-System Device Programmer

ddddd A d

®
ol ChipProg-1SP2

CCCECEELETECELLEETLT

Bracket
2.3 System Requirements

To run ChipProg-02 and control a CPI2-B1 device programmer, you need a personal computer (PC) with
the following components:

Pentium-V or higher CPU.

Microsoft Windows 7, 8 or 10 operating system.

A hard drive with at least 200MB of free space.

In case of use the USB communication: at least one USB 2.0 port.

In case of use the Ethernet communication: at least one LAN port or an Ethernet router with the
Dynamic Host Configuration Protocol (DHCP).

2.4 Software Installation

Insertthe disc that comes with ChipProg-02 into CD drive on your PC. When installer launces, click the
Install ChipProg-02 button, accept the license agreement, and follow the series of prompts that will guide
you through the installation process.

© 2017 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 31
Install ChipProg-02
Exit
- ' - =
W Phyton ChipProg-02 Programmer v. 6.00.23 Installation I - o
License Agreement |

Please read the following license agreement carefully.

| NOTICE: -
l Phytan, Inc. Microsystems and Development tools (hereafter Phyton) licenses the accompanying L4
software to you onby upon the condition that you accept all of the terms contained in this license
agreement. Please read the terms carefully before continuing installation, as pressing the “yes”
button will indicate your assent to them. F you do not agree to these terms, please press the "no
button to exit install.

(@ | accept the terms of the license agreement

(711 do not accept the terms of the license agreement

| E = @ o] (o8] |

= — ™ i

© 2017 Phyton, Inc. Microsystems and Development Tools

32

CPI12-B1 In-System Device Programmer

¥4 Phyton ChipProg-02 Programmer v. £.00.23 Installation ﬂ

Transfer Working Enviromnent from Previoushy Installed Version

Setup has found that the following Phyton ChipProg-02 Programmer versions has been
already installed on this computer. You may wish to transfer the working environment
from one of the installed versions. Click the "Details’ button for more information.

[] Transfer working environment from version:

i@ 6.00.23

ny G
o UL

s (=B

#a Phyton ChipProg-02 Programmer v. 6.00.23 Installation ﬁ

Uninstall Previoushy Installed Versionis)

Setup has found that the following Phyton Chip Prog-02 Programmer versions has been
already installed on this computer. You may wish to uninstall some of these versions.
Choose Phyton ChipProg-02 Programmer versions to uninstall before installing version
6.00.23:

Maote: Version 6.00.23 has been already installed
on this computer and will be uninstalled.

@] (=B

© 2017 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 33
L]
% Phyton ChipProg-02 Programmer v. 6.00.23 Installation e
Installation Folder
Please choose the folder to install Phyton Chip Prog-02 Programmer below. If the folder specified does not
exist, it will be created.
Folder:
“\Phyton'\ChipProg-02\6_00_23
@ s) (o B)
. - . ‘J
% Phyton ChipProg-02 Programmer v. 6.00.22 Installation I - [
Installation Progress I
C:MPhytonChipProg-02%6_00_23 ChipProgUSB pdf
L] 2%
Drive space uged: 27,227,584 Bytes ‘
|

|
I Exit ‘

Phyton ChipProg-02 folder

Atthe end of the installation process the installer creates a folder with ChipProg-02 shortcuts.

© 2017 Phyton, Inc. Microsystems and Development Tools

34 CPI2-B1 In-System Device Programmer

Mame Date modified Type Size

@ Phyton ChipProg-02 6.07.00 6/24/2017 5:52 PM Shortcut 1 KB

[y Phyton USE Device Driver Installer 6/24/2017 5:52 PM Shortout 1 KB

@ Uninstall Phyton ChipProg-02 Programm,.. 6/24/2017 5:52 PIM Shortcut 1 KB
The first shortcut - Phyton ChipProg-02, following with the version number, - opens the startup dialog.
In this dialog you can create multiple shortcuts for launching the device programmer(s) with different
startup settings. All of them are accessible from the Phyton ChipProg-02 folder.

2.5 Startup Dialog

This dialog allows to setup and launch CPI2-B1 and CPI2-Gx device programmers. The dialog window is
divided in a few zones: Program Startup Options, Documentation, Contact Technical Support, For
Developers. A very bottom filed displays prompts for the dialog widget appointed by a mouse cursor -
on the picture below the cursor is placed over the Create a shortcut with this options link in the top
right corner. The picture below displays an example with some specified startup options.

© 2017 Phyton, Inc. Microsystems and Development Tools

Installation and Launching 35

4 ChipProg-02 v. 6.07.01 . [

Programmer Startup Options

|#| Create a shortcut with these options

@ Start Device Programmer §] Open shortcuts folder

[Gang Mode [] piagnostic Mode

Connection: @ USB _ Ethernet
Additional Command Line Options:

-C"NXPAMCES08DV3IZMLE [ISP Mode]" -L"C:\Work\Output Files\Bin\Serial.bin" -FE0x2000 -A -12| -

l@ e e o ["] Demonstration Mode (without hardware)

Close this window after programmer start

Documentation
: No newer Phyton ChipProg-02
B e gl KL Programmer versions available.

X CPI2-B1 User's Guide @3 Phyton Homepage
) CPI2-B1 Quick Start Manual

3 CPI2-G-ooo On-Line Help

) CPI2-G-ooot User's Guide

) CPI2-G-xeo0t Quick Start Manual

Check for updates on start

Contact Tech Support For Developers
@ Submit Bug Report % Application Control Interface (ACI) Manual i
B Create a ticket on the Phyton Site Lol s e s

Phone: 718-259-3191 || Open LabVIEW Library for the Programmer (32-bit |

E-mails: info@phyton.com, sales@phyton.com,

Open LabVIEW Library for the Programmer (64-bit)
support@phyton.com =

Create a shortcut for launching the programmer with the options specified. The shortcut will be available in the Windows'

"Start" menu. \

Prompt on the appointed dialog element

The Program Startup Options zone concentrates major settings, including:

Connection: Select one of communication interfaces: either USB (default) or Ethernet or Local Area
Interface (LAN). Control of CPI2-B1 device programmer(s) via USB interface does not require any special
settings. Connecting via Ethernet requires appropriate setting in the Command Line Command Line
Options . See a description of the -ETH key and associated parameters (IP addresses, etc.)

Gang Mode: Leave it unchecked to control either a single CPI2-B1 device programmer or a certain one
from a cluster of multiple CPI12-B1 programmers or a certain module number of a CPI12-Gx gang device
programmer. Check this box to control either multiple CPI2-B1 device programmers or a CPI2-Gx gang
device programmer connected to the computer.

Number of sites in gang: In this field you may optionally specify a number of CPI2-B1 device
programmers or a number of programming modules in the CPI2-Gx gang device programmer to be
controlled from the PC.

Diagnostic Mode: Check it if you wish the programmer would traced the programmer operations and

© 2017 Phyton, Inc. Microsystems and Development Tools

36

CPI2-B1 In-System Device Programmer

2.6

logged some diagnostic information in the log file. Then you may send this log file to Phyton for
troubleshooting. Launching device programmers in the Diagnostic mode slows the programming down,
so it is recommended only if you wish to get technical assistance from Phyton technical support.

Additional Command Line Parameters: Here you can type in command line keys which will be
added to the options specified in this zone abowe, i.e. the Gang Mode, Number of sites in gang,
Diagnostic Mode options. By default this field is blank.

Create a shortcut with this options: This link allows to store a shortcut for launching the device
programmer with the options specified in the Program Startup Options zone. You may create multiple
shortcuts for launching the programmers.

Open shortcut folder - Opens a folder that displays all the shortcuts launching the device programmer
with different options.

Demonstration Mode: Check this box if you want to evaluate the product's user interface without in the
absence of programmer hardware driven from a computer.

Start Device Programmer: click on this button launches the device programmer(s) connected to a
computer with the options set in the Program Startup Options zone of the dialog.

Start Standalone Mode Monitor: if the programmer works in the standalone mode, click on this button
launches the monitor.

The Documentation zone concentrates: links that invoke different types of user's guides for two device
programmer models: CPI12-B1 and CPI2-Gx.

Changelog link opens the Phyton ChipProg-02 Revision History file that lists most recent feature
changes, newly added devices and bug fixes

Phyton Homepage links opens the www.phyton.com website in your default web browser.

The Contact Tech Support zone includes Phyton contact information and enable to open a new
support case by clicking the Create a ticket on the Phyton Site link.

If the programmer was launched in the Diagnostic mode (see abowe) then you can send a bug report to
the Phyton technical support by clicking the Submit Bug Report button.

The Eor Developers zone includes links to a few tools for those who develop applications for CPI2
device programmer control.

Launching device programmers

Launching a single CPI2-B1 device programmer.

A single CPI2-B1 programmers starts in the Single Programming mode. Unless a serial number of the
CPI2-B1 device programmer was not specified in the Additional Command Line Options box of the
Startup dialog, after clicking the Start Device Programmer button ChipProg-02 program attempts to
establish communication to a CPI2-B1 programmer via a USB or Ethernet port, whatever is selected. On
a very first attempt the programmer issues the Choose a Programmer dialog:

If a CPI2-B1 device programmer is connected via USB:

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com

Installation and Launching 37

@ Choose a Programmer =

T N« Ty

| Programmer Mame Seral Number 1d String
CPI2-B1 | S12-20257 | Phyton Programmer ChipProg-ISP2

(v Comect | (% Cancel | [@ Hep

— |

If it is connected via Ethernet:

Choose a Programmer (Mot Responding)

| Programmer Mame Seral Number 1d String
CPIZ-B1 | 512-20297 | Phytan Programmer ChipProg-ISP2| 192.168.1.5

Click the Connect button to establish communications to the CPI2-B1 programmer and to open the
ChipProg-02 main window. Later, when you launch the same CPI2-B1 device programmer the program
will skip displaying the Choose a Programmer dialog.

Launching a cluster of multiple CPI2-B1 device programmers.

To launch ChipProg-02 program in the gang-programming mode, either check in the use the Gang
Mode checkbox below the Start button in the Startup dialog or add the -GANG key to the command
line.

A number of CPI2-B1 device programmers driven from one computer in gang-programming mode is
limited to 72 pcs. Each single CPI2-B1 unit has its own unique serial number. Before operating with
multiple CPI2-B1 programmers as a gang cluster you have to assign Site Numbers from 1 to N to
serial numbers of the programmers' serial numbers. There are two ways to do this: a) direct specifying

© 2017 Phyton, Inc. Microsystems and Development Tools

CPI2-B1 In-System Device Programmer

a chain of CPI2-B1 serial numbers in the command line or b) manually.

Specifying site numbersin command line.

If the -GANG key is followed by '#' sign with a list of serial numbers separated by semicolons, the application
waits until the number of connected single-site programmers matches the number of serial numbers in the
list, then automatically assigns sequence numbers according to the serial numbers in the list. For example,
if the -GANG#SI2-10014;S12-10022 is specified, the application waits for two programmers with serial
numbers SI2-10014 and SI2-10022 to be connected. The programmer with serial number SI12-10014 will be
assigned the sequence number 1 and programmer with serial number SI2-10022 will be assigned the
sequence number 2.

Manual assighing site numbers.

If the -GANG key is not followed with CPI2-B1 serial numbers you can assign site numbers manually.
Once Windows detected multiple CPI2-B1 programmers connected to a PC the ChipProg-02 opens
the Specify Site Numbers dialog. It prompts for assignment of numbers to individual programmers (as
shown in the figure for the case of three-programmer cluster). Press the Start button on the
programmer to which you would like to assign the site #1. Then the ChipProg-02 will prompt to assign
the site #2 to another programmer (in case there are more than two programmers in the programming
cluster), etc.

O S—

Press the button on a programmer that you want to assign to the
site number 2...

Assigned Sites
Site Number(s) Serial Number Description
1 512-20123 CPIZ-B1 Programmer
2 Mot assigned CPI2-B1 Programmer
3 Mot assigned | CPI2-B1 Programmer

[ﬁ Cancel and exit

[

Control Interfaces

CPI2-B1 device programmers can be controlled by a personal computer via a Graphic User Interface
(GUI), remotely from Automatic Test Equipment (ATE), In-Circuit Testers (ICT), automated handlers and
other equipment connected to a PC or in Standalone mode. This chapter describes all the controls
excluding the Standalone control mode.

Driving a CPI2-B1 programmer (or multiple programmers) connected to a PC is accomplished by using
the friendly and intuitive Graphic User Interface, from a Command Line, or by launching Script Files.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 39

Driving a CPI2-B1 programmer (or multiple programmers) remotely can be accomplished via the DLL
supplied with ChipProg-02 software.

3.1 Using Projects

Using device programmer involves many operations such as choosing target device, loading a file to be
programmed into the device, customizing programming algorithm, constructing a batch of commands for
Auto Programming procedure, configuring the CPI12-B1 user interface, etc. These actions require working
with tens of dialogs, menus and sub-menus in different ChipProg-02 windows. The ChipProg-02 program
allows you to store all such settings in a single file called project. You can create any number of
projects for programming a variety of devices and store them in the project repository. When needed,
these files can be loaded and used just by a mouse-click, or by including a project name on command
line. Use of projects saves time and simplifies programming process.

Projects are especially beneficial for production programming where a typical scenario includes
replication of a lot of chips programmed with the same data but different serial numbers. In such case it
is very convenient to create and lock a project that completely defines the programming session and
then assign programming operation to a worker who will simply replace the chips being programmed
while watching programming progress and results.

The table below lists major project options.

Option group Project options Where to set up...

Project name; Description; Permissions
(password, selected locking options); Files toj
be programmed into the device, File format,
Major properties |Start and end address for file loading,
Destination buffers; Scripts to be preloaded;
Desktop.

Menu Project - Options - Dialog Project
Options

Device type; Auto Detect; Insert test; Check
device ID; What to do when the device
insertion is detected; Device parameters Menu Configure - Dialog Select Device;
(fuses, lock bits, special function registers, | Window Program Manager - tab Options

Device . . .
etc.); Programming algorithm (applicable Windows Device and Algorithm
chip sectors, voltages, oscillator frequency, |Parameters Editor
etc.)
Menu Configure — sub menu Buffers;
Buffer name; Buffer size; Default fill value; Wlnd.ow Buffer — toolbar; Dialog Buffer
Buffers Configuration;

Swap file settings. Window Buffer — toolbar; Dialog Memory

Dump Windows Setup

Algorithm for programming serial numbers;
Custom signature patterns; Algorithm of the
check sum calculation; Check sum formats; | Menu Configure — tabs of the sub menu
Parameters and locations of log files to be | Serialization. Check sum. Log files

saved.

Serialization,
Check sum, Log
files

i Actions triggered by certain events, issuin .
Actions on events 99 y 9 Menu Configure — sub menu Preferences

© 2017 Phyton, Inc. Microsystems and Development Tools

40

CPI2-B1 In-System Device Programmer

3.2

3.2.1

Option group

Project options

Where to set up...

error messages and sounds, logging
results.

Graphical User
Interface

Screen configuration, fonts and colors of
windows, key mappings, messages and
miscellaneous settings.

Menu Configure — sub menu Environment

Statistics

Number of chips to be programmed and
related settings.

Window Program Manager - tab Statistics

You can create, edit and save projects within the CPI2-B1 Graphical User Interface - read about the Project
Menu and related dialogs. The project files have the name extension .upp.

Note. ChipProg-02 software does not automatically save changes to project options on exit. You must
execute the Save or Save as command from the Project menu to save project changes made in all
GUI settings dialogs since this project was opened.

Graphical User Interface

The ChipProg-02 graphical user interface (GUI) contains the following elements:

e Windows.

Dialogs.
Hot Keys.

Menus - global and local.
Toolbars - global and local.

Context-sensitive help prompts.

The GUI features several useful additions designed specifically for the CPI2-B1 operations.

To make your using ChipProg-02 program easier we highly recommend you read the Menus and Windows
chapters in full. You will be able to use the CPI2-B1 device programmers much more effectively.

User Interface Overview

ChipProg-02 features standard Windows interface with several useful additions.

1. Each window has its own local menu (the shortcut menu). To open this menu, click the right mouse
button within the window area or press Ctrl+Enter or Ctrl+F10. Each command in the menu has a hot
key shortcut assigned to a Ctrl+<letter> key. Pressing the hot key combination in the active window
executes the corresponding command.

2. Each window has its own local toolbar. The toolbar buttons access most of the local menu commands
of the window. Awindow toolbar buttons work only within that window. The main ChipProg-02 window
has several toolbars which can be turned on or off (in the Environment dialog, the Toolbar tab).

3. Toolbar buttons feature mouse-over help: when you place the mouse cursor over a toolbar button for two
seconds, a small yellow box appears nearby with a short description of the button’s function.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 41

4.To save screen space, you can hide anywindow title bar. To do this, use the Properties command in
the local menu. You can identify the ChipProg-02 windows by their contents and position on the screen
(and, if you wish, by color and font). When the title bar is hidden, you can move the window as if the
toolbar were the title bar: place the cursor on a free space in the toolbar, press the left mouse button and
drag the window to a new position.

5. You can open any number of windows of the same type. For example, you can open several Buffer
windows.

6. Everyinput text field of any dialog box has a historylist. ChipProg-02 saves them when you close
programming session. Then a previously entered string can be picked from the history list.

7. All input text boxes in the dialogs feature automatic name completion.

8. All check boxes and radio buttons in the dialogs work in the following way: a double-click on the check
boxor radio button is equivalent to a single click on the box or button, followed by a click on the OK
button. This is convenient when you need to change only one option in the dialog and then close it.

3.2.2 Toolbars

The ChipProg-02 program shows seweral toolbars at the top of the main window (see below).

G CPI2-Gx -- ABC test -- [Atmel ATBES8253 [ISP Mode]]
File | View Project Configure Commands Scripts Window Help

@ v F;rh’ E_% P’i Gu‘ L _J [ﬁ"sj 717} |_—| & ,,,j-' ’@ _-1}1 Auto
M Select Device... ||[Amel ATessE253 (1P Moce] -] HEERSRERE

The topmost toolbar (right under the CPI2-B1 main window title) includes the Main menu bar with drop-
down submenus File, View, etc.. The second toolbar contains icons and buttons for the most frequently
used commands on files and target devices (Open project, Load file, Sawve file... Check, Program, Verify,
etc.). There is an indicator of the ChipProg-02 status (Ready, Wait, etc.). The third toolbar displays a
target device selector. The fourth toolbar, which is not displayed by default, includes the built-in editor
options and commands for scripts. The default toolbars can be customized. Refer also to the topics The

Configure Menu, The Environment dialog, Toolbar.

NOTE. Hereafter some toolbar elements can be displayed grayed out - it means that these elements are
unavailable for a particular target device or a mode of use. For example, since only one operation - Auto
Programming - is available for gang programmers, the Check, Program, Verify, Read, Erase buttons
are disabled and grayed out.

Besides the main window toolbars, windows of other types have their own local toolbars with buttons
assigned to the most frequently used commands related to the window. See for example the Buffer
window's toolbar below.

Buffer #0 - Code (128 KB), bytes: 00000000 [00000000] [#==E
Code User Data

Q Addr | Load | Save |Configure Buffer| Setup | View Modify| Block |

File: None P
Checksum: 002FDO00 [Summation, discard overflow]

vovoeeed: FF FF FF FF FF FF FF FF FF FF FF FF FF |

© 2017 Phyton, Inc. Microsystems and Development Tools

42 CPI2-B1 In-System Device Programmer

3.2.3 Menus

The ChipProg-02 Main menu bar contains the following pull-down sub-menus:
* FHlemenu

e View menu

e Project menu

e Configure menu
e Commands menu

e Scripts menu
e Window menu

e Help menu

To access these menus, use the mouse or press Alt+letter, where "letter” is the underlined character in
the name of the menu item.
e Context Menus

Each window has a context menu associated with it. To open context menu, either click the right mouse
button within the window or press Ctrl+Enter or Ctrl+F10.

Most, but not all, context menu commands are also available as toolbar buttons at the top of the window.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 43

3.2.3.1 The File Menu

File menu commands invoke file operations. For those commands that have a corresponding toolbar
button, the button is shown in the first column of the table below. In case there is a shortcut key for a
command, the shortcut key will be displayed to the right of the command in the menu.

Button Command Description
£ Load ... Opens the Load file dialog that specifies all the parameters of the
e

file to be loaded and the file destination.

| ,ﬁ Reload Reloads the mostrecently loaded file.
1.
_—'J Save... Saves the file from the currently active window to a disk. Opens
- the Save file from buffer dialog.
Configuration Fles Gives access to operations with configuration files.
Exit Closes ChipProg-02. Alternatively, use the standard ways to
;E| close a Windows application (the Alt+F4 or Alt+X keys

combination).

© 2017 Phyton, Inc. Microsystems and Development Tools

44 CPI2-B1 In-System Device Programmer

3.2.3.1.1 Configuration Files

On exit ChipProg-02 automatically saves its configuration data in several configuration files named
UPROG:.*. On start-up, configuration is restored from the most recently saved configuration files. In
addition, you can save and load any of these files at anytime using the Configuration Fles command of
the Fle menu. You can have several sets of configuration files for different purposes.

* The Desktop file stores display options and screen configuration as well as positions, dimensions,
colors, and fonts of all open windows. The extension of this file is .dsk. The default file name is
UPROG.dsk.

* The Options file stores target device type, file options, etc. The extension of this file is .opt. The
default file name is UPROG.opt.

® The Session file stores session data and specifies the desktop and options; it can also be saved and
loaded by means of the Save session or Load session subcommand of the Configuration Fles
command. The extension of this file is .ses. The default file name is UPROG.ses.

® The History file contains all settings entered in the text boxes of all the ChipProg-02 dialogs. This file
is hidden but the settings stored earlier are available for quick selection from the History lists. The
extension of this file is .hst. The default file name is UPROG.hst.

3.2.3.2 The View Menu

This menu provides a wayto show various to ChipProg-02 windows.

Command Description
Button
*\; Program Manager Opens the Program Manager dialog.
R
o Device and Algorithm Parameters Opens the Device and Algorithm Parameters
- dialog.
|_—| Buffer Dump Opens the Buffer dialog.

Memory Card Window Opens the Memory Card window
» Device Information Opens the Device Information dialog.
ey
. Console Opens the Console dialog.

3.2.3.3 The Project Menu

This menu contains commands for working with projects.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 45

Command

o
c
=
=
=

New
Open
Close
Save

Save As

Export
Import

Repository

Options

WP ed s RO W

Description
Opens the Project Options dialog.

Opens the Open Project dialog for loading an existing project file.
Closes and saves current project.

Saves all settings of current project.

Opens the Save project dialog. Duplicating projects under different
names and/or in different folders is helpful for cloning similar
projects.

Opens the Exporting Project dialog
Opens the Importing Project dialog

Opens the Project Repository dialog for storing current projectin
project data base for convenient handling.

Opens the Project Options dialog for editing project options.

Note. ChipProg-02 software does not automatically save changes to project options on exit. You
must execute the Save or Save as command from the Project menu to sawve project changes made
in all Ul settings dialogs since this project was opened.

3.2.3.3.1 The Project Options Dialog

This dialog is used for setting initially and editing project options.

Control

Project Fle Name

Permissions...

Project Description
(optional)

Desktop

Fles to Load to Buffers

Add file

Description

Specifies the project file name and path. If extension is omitted. when you
close the dialog by clicking the OK button, the program saves the project
file with extension .upp.

Opens the Editing Permission Settings dialog. Here you can protect the
project file against unauthorized editing. By checking appropriate boxes in
this dialog you can lock major groups of project options.

Here you can enter your custom comments for the project.

Two radio buttons which allow you to choose if current project will have its
own desktop, or all ChipProg-02 projects will use the same desktop
settings.

One or more files to be loaded into the buffers upon opening the
project.

Opens the Load File dialog for adding this file to the Files to Load to

© 2017 Phyton, Inc. Microsystems and Development Tools

46 CPI12-B1 In-System Device Programmer

Buffers.

Remove selected file from field Fles to Load to Buffers.

Opens the Load File dialog for editing a file highlighted in the Fles to Load
to Buffers list.

Script to execute before Here you can enter the name of a script to be executed before loading
loading files: the files to the project.

Remove file

Edit file options

Script to execute after Here you can enter the name of a script to be executed after loading the
loading files: files to the project.

The dialog should be completed by clicking the OK button. Then a specified project file with the extension
.upp will appear in a specified folder.

3.2.3.3.2 The Open Project Dialog

This dialog is used to open a previously created project.

Control Description

Here you can enter full path of a project file name or browse project files. The

Project File Name ChipProg-02 project files have file name extension .upp.

Shows a list of previously opened projects. Double-clicking on a line in the

Project Open Histor . . :
J P ! y list opens corresponding project.

Remove from list Deletes selected project from the Project Open History list.

3.2.3.3.3 Export and Import Project Dialogs

The ChipProg-02 allows exporting and importing projects created for the CPI2-B1 control.

The Export Project dialog allows mowving an entire project along with the user's data to another
compulter.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 47

& Export Project @
Exporting a project creates a compressed file that contains the projectfile and all data files loaded into
buffers. This makes it easier to move projectto another location.

Afterwards the compressed project can be loaded just like a normal project (everything will be
decompressed automatically) or unpacked with the 'Project' -= 'Import...' command.

Folder for compressed project file:

C\Work\Projects - @ Browse..

v | Overwrite output file without prompt

Add timestamp postfix to the compressed file name ("yyyy-mm-dd-hh-mm-ss")

v | Encrypt file with password: "t0|

|¢' oK ‘ |u’ Cancel | |P Help

The program zips a specified the project file (for example, ABC.upp) with the data file(s) to be loaded by
opening the ABC.upp project to the CPI2-B1 programmer's buffer and stores the exported compressed
project into a specified folder (here C:\Work\Projects). Exported project files have the .upc extension - in
this case the ABC.upc file. The .upc files hawve a standard zip format.

Checking the Overwrite output file without prompt box prevents casual spoiling of a previously
stored compressed project.

Checking the Add timestamp postfix to the compressed file name enables to create a series of
.upc files with the same name but made at a different time.

For security you may encrypt the .upc file. Check the Encrypt file with password box and type in your
password in a field at right. Later, when you attempt opening or importing the project, you will be

prompted to enter this password.

These exported files can be moved or copied to another PC and then can be open by the Project >
Import command.

The Import Project dialog enables extracting a project exported from one computer to another.

© 2017 Phyton, Inc. Microsystems and Development Tools

48

CPI2-B1 In-System Device Programmer

@B Import Project @

Compressed project file:

C\Work\Projects\RTX-028.upc - i@l Browse...

Folder to unpack project files to:

CA\Projects\UnpackedRTH] A £l Browse. .

11

v | Open project after unpacking

« 0K l |ﬂ' Cancel | ‘P‘ Help |

Specify an exported .upc file, a destination folder to unpack it and click OK. If the source .upc file was
encrypted with a password enter it into a popped up box.

For the example abowe, all parts of the RTX-028.upc compressed project will be extracted into the folder
UnpackedRTX, including the RTX-028.upp project file and all the data files associated with this project.

Compressed .upc files can be loaded to ChipProg-02 by the Open Project command as well as "simple"
.upp project files. When you use the Open Project command from the Project menu ChipProg-02
program extracts a .upc file to a temporary folder, loads the extracted project and then deletes this
temporary created folder. If the .upc file includes large data, opening the project may take quite a long
time. Use of the Import Project function vs Open Project saves time because an imported project
extracts to a specified folder and all extracted files remain in this folder.

Since opening a compressed .upc project completes with deleting a folder that temporary stores
extracted files they cannot be stored and modified.

3arpyxaTb cxXaTble NPoeKTbl MOXHO TOUHO TaK Xe, Kak U 06bl4Hble. O60/I0uKa NpPorpamMmmaropa
pacnakoBbIBAET CXKaTblii (halifl BO BPEMEHHYIO Narnky, 3arpy)aeT pacnakoBaHHbIVi MPOEKT, a 3aTem
yaansieT BpeMeHHyo nanky. Ecim galifibl AaHHbIX BE/IMKU N0 06bEeMY, TO 3TO MOXET 3aHATb HEKOTOpoe
Bpemsi. YTo6bl n3GexaTb pacnakoBKM KaKAbIA pa3 npu 3arpy3ke NpoekTa, ero MOXHO MMMOpPTUPOBaTh -
npv UMMoOpPTe NPOEKT PacnakoBbIBAETCS B YKa3aHHyto nanky v Bce ¢iaii/ibl ocTaloTcs Tam.

Tak Kak Mocsie 3arpy3Ku CXaToro NpoeKkTa BCe ero c/iefbl yAansTCs C AMCKa, TO 3arpy>XeHHbI CxXaTblii
MPOEKT Hesb3si PeflakTMPoBaTh U COXPaHsATh. KOMaHAbl peaakTMpoBaHUs 1 COXPaHeHUsl /1S CXaToro
NpoeKTa HegoCTYMHbI.

MMnopT npoekTa - 3To pacnakoBka cxkaToro diaiina B ykasaHHyto nanky Ha aucke. OnuUMOHa/IbHO MOXHO

yKasaTb 000/104Ke OTKPbITb pacnakoBaHHbI NPOEKT. PacnakoBaHHbI NPOEKT HAYEM He OT/IMYaeTcs oT
006bIYHOTO.

UT06bI 3KCMOPTUPOBATL NPOEKT, BbINOMHMUTE KOMaHAy "MpoekT" -> "3JkcnoptmposaTts”. OTKpoeTcsa guasior,

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 49

e Hy)XHO yKasaTb nanky, rae oy[eT co3flaH cxatblii aiin. IMs cxatoro dguaiina 6yAeT TakuM Xe, Kak Yy
HecxkaToro, a pacluupeHue 6yaet .upc. OnuyoHasbHO A1 3allUTbl AaHHbIX MOXHO yKa3aTb Napo/ib.

3.2.3.3.4 Project Repository

The Project Repository command of the Project menu opens the Project Repository tree.

Project Repository is a small database that stores records with links to project files. Here you can
see the CPI2-B1 projects in a tree form similar to the Windows File Explorer, to logically organize
projects for convenient access. Operations with the repository do not change the projects
themselves - the repository works only with records about the projects (links to the project files). A
tree branch may show projects and other branches. Any branch may contain different projects with
the same names. Different branches may contain links to the same project.

Tree branches show each project file as a name (without a path) and a description in square
brackets. The ChipProg-02 remembers state of tree branch (expanded/collapsed) and restores it
next time you open the dialog.

When you install a new version of the ChipProg-02 software and copy the working environment from
the previously installed version, the new version will inherit the existing project repository (the
repos.ini file).

Dialog Control

Description

Add New Branch Opens the Add New Branch dialog in which you can specify the name

of a new branch.

Add a Project to Branch Show the Open Project dialog to select a project to be added. Clicking

the Open button adds the selected project to the selected branch.

Add Current Project to

Branch Adds the currently opened project to the selected branch.

Remove Project/Branch Deletes the selected project or branch from the repository. All child
branches are also deleted.

When deleting a project from the repository, the ChipProg-02 deletes
only the repository record about the project, and does not delete the
project file from disk.

Edit Branch Name

Move Up

Move Down

Save Repository

Browse Project Folder

Open Project

Close

Opens the Edit Branch Name dialog for the selected branch.

Moves a selected project or branch up within the same level of
hierarchy. The branch moves together with all its child branches .

Moves the selected project or branch down within the same level of
hierarchy. The branch moves together with all its child branches .

Writes or updates the repository to the disc file repos.ini in the CPI2-
B1 working folder.

Opens MS Windows Explorer with the opened folder of the selected
project.

Writes the repository to the disk file and opens a selected project.

Closes the dialog. If the repositoryis changed, ChipProg-02 will

© 2017 Phyton, Inc. Microsystems and Development Tools

50 CPI2-B1 In-System Device Programmer

3.2.3.4 The Configure Menu

promptto save it.

This menu gives access to all ChipProg-02 configuration dialogs.

Button

M, Select Device...

3

e

4

/1

3.2.3.4.1 The Select Device dialog

Command

Description

Select device

Device
selection
history

Buffers
Serialization,

Checksum,
Log file

Preferences
Simplified
User

Interface
editor

Environment

Opens the Select Device dialog.

Lists previously selected devices.

Opens the Buffers dialog.

Opens the Serialization, Checksum, Log Fle

Opens the Preferences dialog.

Opens the editor for setting Simplified User
Interface

Opens the Environment dialog with tabs: the
Fonts tab, the Colors tab, the Key Mappings
tab, the Toolbar tab and the Misc tab.

The dialog allows specification of the device to work with; it has several groups of controls.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 51

DCevices to list

V|EPROM, EEPROM, FLASH
PLD. PAL EPLD
Micrngantmllers

Devices [Texas Instruments]

Search mask:

| |Programmable In-Socket
[/ Programmable In-System

(@) Selected manufacturer only

Lﬁ.ﬂ.ll manufacturers

Scenix
Seiko
Semtech
Sensory
3is
Siemens
Signetics
Silicon Labs
Spansion
SyncMOS
Syntronix
TOPRO
Tests
Toshiba
Unknown
VLS|
Vantis
Weltrend
Winbond
XEMICS
Alcar
ilinx
ZDEC
Zentel
Lilog

LM3S102-ERN [ISF JTAG Mode]
LM3S102-EREN [ISF JTAG-Chain Mode]
LM3S102-EREN [ISF WD Mode]
LM3S102-IRN [ISP JTAG Mode]
LM3S102-IRN [ISP JTAG-Chain Mode]
LM3ST102-IRN [ISP WD Mode]
LM3ST1T10-EQC [ISP JTAG Mode]
LM3IST1T10-EQC [ISP JTAG-Chain Mode]
LM3IST1T10-EQC [ISP SWD Mode]
LM3STTI0HQC [ISF JTAG Mode]
LM3ISTTIHIQC [ISP JTAG-Chain Mode]
LM3STTI0HQC [ISF SWD Mode]
LM3S1133-EQC [ISP JTAG Mode]
LM3IST1133-EQC [ISP JTAG-Chain Mode]
LM3ST1133-EQC [ISP SWD Mode]

LM3IST1133-1QC [ISF JTAG Mode]

Type: Microcontroller > M5P430

Fackages/Adapters

Memary

Code: 539,824 Bytes
Password: 8,193 Bytes

@ Hel

of 0K ‘ﬂ Cancel |

© 2017 Phyton, Inc. Microsystems and Development Tools

52

CPI12-B1 In-System Device Programmer

Devices to list:

Manufacturer

Search mask:

Devices

In this field you can check one or more boxes to specify the target
device type. Devices are combined into three functional groups: a)
Serial memory devices; b) Programmable Logical Devices; c)
Microcontrollers. Speed up the search by specifying the device
properties if possible.

The box lists the device manufacturers in alphabetic order.

Here you can enter a mask to speed up device search. The *'
character (star) represents any number of any characters in device
part number. For example, the mask 'PIC18*64" will list all PIC18
devices ending in '64".

Displays all devices by the chosen manufacturer that satisfy search
criteria specified in Devices to list, Search mask, and Packages/
Adapters fields.

Sometimes you may see some devices listed in the Devices pane "greyout":

Devices [Microchip]

Search mask:

PIC18LF8620
PIC18LF8621
PIC18LF8622
PIC18LF8627
PIC18LF3625
PIC18LF3680
PIC18LFE720
PIC18LFE722
PIC18LFE723

[1SP HV Mode]
ISP HV Mode]
ISP HV Mode]
ISP HV Mode]
ISP HV Mode]
ISP HV Mode]
ISP HV Mode]
ISP HV Mode]
ISP HV Mode]

PIC32Mx220F032B-/ML [ISF Mode]
PIC32Mx220F0320-IML [ISF Mode]
PIC32MX320F032H /MR [ISF M
PIC32MX320F032H I/PT [ISP Mc

PIC32MX320F032H VMR [ISP Mode]
PIC32MX320F032H VPT [ISP Mode]
PIC32Mx320F032H-40I/MR [ISF Mode] I

3.2.3.4.2 The Buffers dialog

Support of "greyout" part numbers require having CPI12-D-xxxx device library licenses. After locking a
certain CPI2-D-xxxx device library license all the devices covered by this license become \visible and a
device belonging to this library can be selected.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 53

Displays names, sizes and sub-layers of all open buffers

Buffer list:

Add Opens Buffer Configuration dialog to create a new buffer

Delete Deletes the buffer highlighted in the 'Buffer list' box.

Edit Opens Buffer Configuration dialog for editing.

View Switches focus to the window displaying the buffer highlighted in the

‘Buffer list' box. If this window is hidden behind others it will be
brought to the foreground.

This drop-down menu allows limiting the amount of computer RAM
allocated for each buffer. The amount of free memory available for
allocation is shown here in this screen area.

Memory Allocation

If computer's RAM is limited, the ChipProg-02 can temporarily store
buffer images on PC hard drive to free some RAM. You can select
the hard drive or allow the program to swap files automatically.

Swap Fles

Checking this box enables swapping memory to the network drives
connected to your computer.

Use network drives

Here you can resernve space on the hard drive that will never be used

Amount of space to leave)]
for file swapping.

free on each drive (GB):

3.2.3.4.2.1 The Buffer Configuration dialog

The Buffer Configuration dialog allows to setup sub-layers in buffers and to make their presentation
easier to work with. To open this dialog click the Buffer Configuration button in the toolbar of the
Buffer window.

The dialog has one tab for each sub-layer of a particular device. Every buffer has at least one main
layer, so the tab 'Code’ is always displayed in the dialog foreground. If selected device has other
address spaces (‘Data’, 'User’, 'ID location', etc.) the buffer will have additional sub-layers. For
example: Microchip PIC16LF18875-I/PT device has two sub-layers: ID location and Data (see the
picture below). Here the Buffer Configuration dialog has three tabs: one main for Code settings and
two for ID location and Data sub-layers.

The "Buffer name, Code settings" tab contains a dialog for configuring the main buffer layer - the
‘Code' layer.

© 2017 Phyton, Inc. Microsystems and Development Tools

CPI12-B1 In-System Device Programmer

L il
Buffer Configuration u

Buffer name, Code settings | |D location | Data |

Buffer Name

Buffer #0 -
Size of layer Code”;

128 KB -

Fill layer Code' with data:

Before loading file
After device is selected

[Diata to fill layer with:
|| @ Predsfined (Bx3FFF)
) Custom: | OFF -

) Random

f Shrink buffer size when device iz selected

(«# oK | [Cancel | [@ Hep |

=

Here you can type a name for the buffer or pick it from the history
list. By default the first opened buffer gets the name "Buffer #0",
the next one "Buffer #1", etc. Using this field you can give the
buffer any name you wish.

Buffer Name

Here you can select the size of the 'Code' layer using drop-down

Size of sub-layer 'Code'
menu, from 128KB to 32MB.

The program fills the buffer sub-layers with default data pattern,
usually 'FF's or zeros. By checking these boxes you specify when
the 'Code’ layer fills with default information - before loading the file
or right after device type has been chosen or both.

Fll sub-layer 'Code' with
data:

Leaving the "Before loading file" box unchecked enables merging
multiple files in a single buffer with following programming a
merged file into a target device. This, for example, can be
convenient for merging code with configuration data for
programming microcontrollers if the configuration file exist
separately from the main code file.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 55

Data to fill sub-layer with: These two radio puttons Qeﬁne Whgther the 'Code' sub-layer will be
filled with default information specific for the selected device, or by

a custom bit pattern or randomly.

Shrink buffer size when InitiaII)_/, buff_er size usually exceeds targ.et device 'Code' size. By
checking this box you decrease buffer size to match target device

device is selected]
layer size and to free unused PC memory.

Other tabs open appropriate dialogs which control filling the sub-layer with data similarly to filling the
main (Code) layer.

3.2.3.4.3 The Serialization, Checksum, and Log Dialog

The dialog allows writing serial numbers, unique signatures, checksums and user-specified
information into target device memory. It also allows to configure writing log of the process of mass

production device programming.

All functions available with these dialogs: Serialization, writing in Checksums, Signatures,

Important!

etc.
work ONLY when you use the Auto Programming mode for mass production.

The tabs of the dialog shown below allow manual setting of the parameters and methods of their
calculation:

Serialization, Checksum, Log File

General Serial Number Checksum Signature String Custom Shadow Areas Log File

Attention! All operations with Senal Number. Checksum, Signature String. Shadow Areas and
Log File are performed with Auto Programming only.

Using Serialization

® Discard serial numbers of defective devices. In this mode serial numbers of the device yield rr1:aj,-r
include gaps in the sequence of numbers written into successfully programmed devices. :

If a programming operation fails, discard the device but keep incrementing serial numbers (in
accordance with the 'Serial Number' dialog's settings). In this mode, serial numbers ofthe device
yield are always represented by continuously increasing sequence, i.e. without gaps.

© 2017 Phyton,

Inc. Microsystems and Development Tools

56 CPI2-B1 In-System Device Programmer

General
Serial Number
Checksum

Signature String

Custom Shadow Areas

Log File

ChipProg-02 merges: a) the data loaded to buffers and b) special data set in the shadows areas and
then writes the merged data array into the target memory device. If some addresses of the merged
data owerlap each other then the data taken from the shadow areas overwrite ones taken from the
memory buffer and the merged data physically mowe to the target device memory.

3.2.3.4.3.1 Shadow Areas

The Concept of Shadow Areas

Shadow areas are special memory locations that do not belong to the buffer; they are located in a
separate area of computer RAM. The contents of shadow areas may include individual chip serial
numbers, buffer checksums, special signatures, constants, etc. Contents of a shadow area are not
part of the source file loaded into a buffer; instead it can be set either manually via CPI2-B1 user
interface or remotely via Application Control Interface. There are several shadow areas for each buffer
layer that can be specified in this dialog - three for dedicated parameters: Serial Number, Checksum,
and Signature String; plus multiple Custom Shadow Areas.

Overlapping of Shadow Areas and Buffer Data

Whenever Program command is executed, the ChipProg-02 merges a) data loaded into buffers, and
b) special data in the shadows areas. It then writes the merged data array into target memory
device. If any addresses in the merged data owerlap, the data read from shadow areas overwrite the
data read from memory buffer, as shown below.

Custom shadow area N ?
Custom shadow area N-1 ?
Custom shadow area N-2 ?

Custom shadow area 2 ?
Custom shadow area 1 ?

Signature string ?

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 57

Checksum ?

Serial Number ?

Data in memory buffer

Note. It is important to carefully check correctness of the addresses set in the the Serialization,
Checksum and Log File dialog to prevent data corruption as a result of areas overlapping by mistake!
3.2.3.4.3.2 General settings

The tab contains a dialog to handle serialization of the devices in case a device programming fails. The
two options are shown in the figure below.

Senalization, Checksum, Log File

General Serial Number Checksum Signature String Custom Shadow Areas LogFile

Attention! All operations with Senal Number. Checksum. Signature String. Shadow Areas and
Log File are performed with Auto Programming only.

Using Serialization

® Discard serial numbers of defective devices. In this mode serial numbers of the device yield r'r15|§..|r
include gaps in the sequence of numbers written into successfully programmed devices. -

If @ programming operation fails, discard the device but keep incrementing serial numbers {in
() accordance with the 'Serial Number' dialog's settings). In this mode. serial numbers ofthe device
yield are always represented by continuously increasing sequence, i.e. without gaps.

3.2.3.4.3.3 Device Serialization

The Serial Number tab defines a procedure of assigning a unique number to each single device from
a series of devices to be programmed. By default serial number starts at 0, is incremented by 1, and
occupies one hyte.

© 2017 Phyton, Inc. Microsystems and Development Tools

58 CPI12-B1 In-System Device Programmer

Write S/INto address:

Current serial number:

SIN size, in byte:

Byte Order

Display S/N as:

Increment serial number
by:

Use script to increment
serial number:

If this box is checked, the programmer will write a serial number into
the specified address of the specified memory layer of the target
device, as defined by the settings below.

Use this field to specify the starting serial number. Default value is
0.

Specify the size of serial number in bytes; for example: 1, 2, 4, etc.
Default is one byte.

These radio buttons define the order of bytes in the serial number (if
it occupies more than one byte): either the least significant byte
(LSB) follows the most significant byte (MSB) or vise versa.

These radio buttons choose the serial number display format - decimal
or hexadecimal.

By selecting this radio button you set the serial number increment
as the fixed value specified here: 1, 2, 10, etc.

By checking this radio button you set the increment value to the
result of executing the specified script file.

3.2.3.4.3.4 Checksum

The Checksum tab controls automatic calculation of checksums of data in buffers and writing the
checksums into the target device memory. Checksums can be calculated using a commonly used
"standard" algorithm, or using a complex custom algorithm implemented in a script.

Element of dialog

Write checksum to

address:
Address range for

checksum calculation:

Auto:

User-defined:

Use algorithm to calculate
checksum:

Description

If this box is checked, the programmer will write a checksum into
the specified address of the specified memory layer of the target
device, in accordance to the parameters below.

There are two options for setting the address range: Auto and User-
defined.

The address is defined as a full range of the selected device memory
layer.This is the default.

Here you can specify the start and end addresses of the selected
device memory layer for which the program calculates the
checksum.

This drop-down menu allows to select one of several available
algorithms. The default is "Summation, discard overflow".

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 59

Use script to calculate
checksum:

Size of calculation result:
Size of data being summed:
Operation on summation

result:

Byte Order:

Exclude the following areas

from checksum calculation:

3.2.3.4.3.5 Signature string

By checking this radio button you specify a script that implements
custom checksum calculation.

These radio buttons choose the size calculated checksum: one, two
or four bytes.

These radio buttons choose the size of data being summed up: one,
two or four bytes.

These radio buttons allow to perform no operation on the calculated
checksum, or to negate or complement it.

These two radio buttons define an order of bytes that represent the
checksum - either the least significant byte (LSB) follows the most
significant byte (MSB) or vice versa.

Checking off this box allows to specify one ore more memory ranges
that will be skipped by the checksum calculation algorithm. To
specify a range enter its start and end addresses and click the 'Add'
button.

The tab contains settings for writing user-defined signature string into the target device. The signature
may include generic data (such as the date when the device was programmed) and unique data (such
as project name, operator name, etc.).

Dialog Control

Description

Write Signature String to
address:
in sub-layer:

Max. size signature string:

Use Signature String
template:

Use script to create
Signature String:

Template String Specifiers:

When this box is checked, the programmer will write the specified
signature into the specified address of the specified memory layer of
the target device, according to parameters below.

This field defines the maximum length of the signature string as a
number of characters.

One of two radio buttons. If checked, the string of parameters from
Template String Specifiers drop-down menu will be programmed into
the target device.

This radio button selects an alternative method of composing the
signature string by means of a custom script.

This field lists available parameters (specifiers) for inserting into the
Use Signature String template field. Each parameter starts with the
'$' symbol.

© 2017 Phyton, Inc. Microsystems and Development Tools

60 CPI12-B1 In-System Device Programmer

3.2.3.4.3.6 Custom Shadow Areas

The tab provides means to specify user-defined data to program into target device. User can define
any number of custom shadow areas. The data can be either entered manually or created by a script.

3.2.3.4.3.7 Logfile

The tab allows set up of a log or logs of the device programming.

Enable log file

Separate log file for each
device

Fle Name (Generated
Automatically)

Folder for log file:
Single log file for all device
types

File Name

Log File Contents

Gang mode: Socket #

Date/Time

Events (device type change,

file names, etc.)

Device operation

Detailed Device operation

Operation Result

Check this box to enable logging device programming sessions and
to set log parameters below.

Radio buttons to select whether separate logs will be written for
each manufacturer or target device type, or single log will be written
for all devices programmed.

Radio buttons to select what kind of specifier will be included in the
log file name: both manufacturer and device type (for example:
Atmel ATSAM3S1BB-AU, Microchip PIC18F2525, etc.) or device
type only (for example: ATSAM3S1BB-AU, PIC18F2525, etc.).

The field for entering the full path to the folder where log files will be
created. There is also a button for path browsing.

Check this radio button to write single log for all types of devices
programmed.

The field for entering the full path to the folder where the common log
file will be created. There is also a button for path browsing.

Log file settings.

If device is programmed in Gang (multiprogramming) mode when this
box is checked, the socket number will be logged.

Check this box to log date and time of device programming.

Check this box to log all events associated with device
programming, such as target device replacement, loaded file names,
etc.

Check this box to log all events associated with device
manipulations.

Check this box to enable more detailed logging of all events
associated with device manipulations.

Check this box to log results of programming operations.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 61

Device #/Good devices/Bad
devices

Serial Number

Signature string
Checksum

Buffer name

Programming address

Programming options

Log Fle Format

Log File Overwrite Mode

Warn if size exceeds

Immediately write log file to
disk, no buffering

Check this box to log the total number of the devices programmed,
the number of successfully programmed devices and the number of
failed ones.

Check this box to log serial number read from the device.
Check this box to log signature string read from the device.
Check this box to log checksum value read from the device.
Check this box to log buffer name.

Check this box to log ranges of device locations that have been
programmed.

Check this box to log all programming options.

A Pair of adio buttons: one selects plain text format of the log file,
the other selects comma-separated text that can be imported into
Microsoft Excel.

A pair of radio buttons. Checking the top one selects the mode of
appending new records to a specified log file. Checking the other
selects overwriting the old log each time CPI2-B1 re-starts.

If this box is checked, ChipProg-02 will issue a warning every time
log size exceeds a user-specified value.

If this box is checked, ChipProg-02 writes log directly to hard drive
without buffering it in computer RAM.

3.2.3.4.4 The Preferences Dialog

This dialog contains settings for miscellaneous options.

© 2017 Phyton, Inc. Microsystems and Development Tools

62

CPI12-B1 In-System Device Programmer

Options

Enable caching of buffer data to the programmer SD card
[|Reload lastfile on start-up
Execute Power-On test on start-up
[] Terminate device operation on error and do not display error message
Show error messages in the 'Operation Progress' pane
Display clock in the 'Operation Progress' pane
Log operations to the Console window
Reset all settings to defaults when closing project
[«] Deny computer power suspension

Sounds

() Use PC speaker to play sounds
(@ Use sound card to play sounds

Device operation error: | Sound 1 v @, Test

Device operation complete: Mone b (- Test

Device operation complete (Gang Mode). Mone w| (@ Test

Programming start (AutoDetect Mode). Mone ~| (@ Test

Device countdown value reaches zero: | Mone v | | Test
« OK # Cancel £ Help

=

Sriens Some (but not all) dialog options are described below.
Check this box to reload the last loaded file into the open buffer(s) every

Reload last file on start-up -
time you start CPI2-B1.

Execute Power-Onteston This box is checked by default. Uncheck it to skip running self-test at
start-up

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 63

Terminate device
operation...

Log operations in the
Console window

Deny computer power
suspension

Sounds

Device operation error:
Device operation

complete:

Device operation complete
(Gang Mode):

Programming start
(AutoDetect Mode):

3.2.3.4.5 The Environment Dialog

CPI2-B1 start-up.

Check this box to stop programmer operations operations on any error
and suppress error messages in the user interface.

Check this box to enable dump of programming session trace to the
Console window.

While the programmer is not communicating with the target device, the
computer may switch to the sleep mode. Check this box to prevent
Windows from entering the sleep mode. This does not prevent entering
sleep mode when an operator closes notebook lid or shuts down the
computer by selecting Start > Shut down. This option will not disable
screen saver nor prevent powering off the monitor.

In the process of CPI2-B1 executing any command on the target device,
entering sleep mode is disabled regardless of this check box status
because powering off USB port may cause damage to the target device.

If this box is unchecked, PC wake-up will cause ChipProg-02 software
crashes. If a crash happens, it is necessary to cycle CPI2-B1 power and
re-launch the ChipProg-02 application.

All programmable sounds can be picked from the preset ChipProg-02
sounds

Select the sound for error operations.

Select the sound for successful completion of the programming
operations in a single programming mode (i.e. when one CPI2-B1 is in
use).

Select the sound for successful completion of the programming
operations in a gang programming mode (either a few single-site
programmers are connected to one PC for multi-device programming or
the CPI2-B1 gang programmer is in use).

Select the sound for indicating the start of the device programming when
the CPI2-B1 automatically detects insertion of a device into programming
socket.

The Environment dialog includes the following tabs:

Fonts tab,
Colors tab,

Mapping Hot Keys tab,

Toolbar tab,

Miscellaneous Settings tab.

© 2017 Phyton, Inc. Microsystems and Development Tools

64 CPI2-B1 In-System Device Programmer

3.2.3.4.5.1 Fonts

The Fonts tab of the Environment dialog provides settings for fonts and some Ul elements in ChipProg-
02 windows. Only monospaced (non-proportional) fonts are used to display information in windows
(defaultis Fixedsys). To change window appearance you can select a font to be used in all windows, or
in any particular window.

The Windows area lists the types of windows. Select a type to change its settings. The settings apply to
all windows of selected type, including the windows that are already open.

Control Description
Window Title Bar Toggles display of title bar for windows of the selected type. If the boxis

checked it adds a toolbar at the position specified by the Windows Toolbar
Location option. To save screen space uncheck the box. Also, see notes

below.
Window Toolbar Sets the toolbar location for selected window.
Location
Grid Toggles display of the vertical and horizontal grids in windows of certain
types, and enables adjustment of column width if the vertical grid is allowed.
Additional Line Provides additional line spacing to be added to the standard line spacing.
Spacing Specify a new value or choose from the list of most recently used values.
Define Font Opens the Font dialog. The selected font applies to all windows of the
selected type.
Use This Font for All Applies the font of the selected window type to all ChipProg-02 windows.
Windows
Notes

1. To move a window that does not have a title bar, place the cursor on its toolbar, where there are no
buttons, and then act as if the toolbar were the window title bar. Also, you can access the window
control functions via its system menu by pressing the Alt+<grey minus> keys.

2. Each window has Properties item in its context menu, which can be accessed by a right click. The Title
and Toolbar items of the Properties sub-menu toggle the title bar and toolbar on/off for the active
window.

3.2.3.4.5.2 Colors

The Colors tab of the Environment dialog contains color settings for window elements such as
background, font, etc. By default most colors are inherited from MS Windows; here you can set your
preferred colors.

Control Description
Color Scheme Name of the color scheme. Your can type a name or choose a recently used

one from the list.

Save bhutton saves the current scheme to disk; later you can restore color
settings byjusta mouse click. Remove button removes the current scheme.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 65

Colors Lists the names of color groups. Each group consists of several elements.
Inherit Windows When this boxis checked, the selected color is inherited from MS Windows
Color color scheme. If later you change the MS Windows colors through the

Windows Control Panel, this color will change accordingly. This option is
available only for background and text colors.

Use Inverted Text/ When this boxis checked, the program inverts the selected window colors

Background Color (for text and background). For example, if the Watches window background is
white and the text is black, then the line with the selected variable will be
highlighted with black background and white text.

Edit Opens the Color dialog if the Inherit Windows Color and Use Inverted Text/
Background Color boxes are unchecked for this type of window.

The Color dialog also opens with a double-click on a color in the Colors list.

Spread Sets the selected color for all windows. This option is useful for text and
background colors. For example, if you set yellow text on blue background for
the Source window, and then click the Spread button, these colors will be set
as the text and background colors for all windows.

Font To highlight syntaxin the Source window you can specify additional font
attributes - Bold and ltalic.

In some cases when synthesizing bold fonts, MS Windows increases
character size so that the font becomes unusable, because the bold and
regular characters should be of the same size. In these cases, the Bold
attribute is ignored.

Sometimes this effect takes place with Fixedsys font. If you need to use Bold
fonts, choose the Courier New font.

3.2.3.4.5.3 Mapping Hot Keys

The Key Mapping tab of the Environment dialog is used to assign hot keys to all ChipProg-02 commands.
The Menu Commands Tree column displays a tree-like expandable diagram of all commands. The Key 1
(Key 2) columns contain hot key combinations corresponding to commands. The actions applyto the
currently selected command.

Control Description
Define Key 1 Opens the Define Key dialog. In the dialog, press the key combination you
Define Key 2 want to assign to the selected command, or press Cancel.

Alternatively, double-click the "cell" in the row of this command and the Key 1
(Key 2) column.

Erase Key 1 Deletes the assigned key combination for the selected command.
Erase Key 2 Alternatively, right click the "cell" in the row of this command and the Key 1
(Key 2) column.

© 2017 Phyton, Inc. Microsystems and Development Tools

66 CPI2-B1 In-System Device Programmer

3.2.3.4.5.4 Toolbar

The Toolbar tab of the Environment dialog controls display and contents of window toolbars.

Control Description
Toolbar Bands Lists the ChipProg-02 toolbars. To enable/disable a toolbar check/uncheck
its box.

Buttons/Commands Lists the buttons available for the toolbar selected in the Toolbar Bands list.

To enable/disable a button on the toolbar check its box.

"Hat" Local Window
Toolbars

Toolbar Settings are

Toggles between "flat" and 3D appearance of toolbar buttons in specifyed
windows.

Applies current settings of this dialog to other projects or future opened files.

the Same for Each
Project/Desktop Fle

3.2.3.4.5.5 Messages

Check messages that program should display, uncheck messages that you do not want to be
displayed.

3.2.3.4.5.6 Miscellaneous Settings

The Miscellaneous tab of the Environment dialog contains settings for miscellaneous properties of
ChipProg-02 windows and messages.

Control

Main Window Status
Line

Quick Watch
Enabled

Highlight Active
Tabs

Double Click on
Check Box or Radio
Button in Dialogs

Show Hotkeys in
Pop-up Descriptions

Do not Display Box if
Console Window
Opened

Description

Sets visibility and location of the <% CM%> window status line.

Turns Quick Watch function on or off.

Toggles highlighting for the currently active tab (MS Windows-style) in
windows that have tabs.

Makes mouse double click equivalent to single click plus pressing OK button
in dialogs.

Toggles display of hot keys in mouse-over help for toolbar buttons.

If Console window is open it will show messages. Otherwise messages will
be shown in message box.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 67

Always Display All messages will be displayed in the message box. In addition, the Console
Message Box window will also display same messages.
Automatically Place When this boxis checked, the cursor will always be on the OK button

Cursor at OK Button whenever message boxopens.

You can also press Enter keyinstead of using the mouse to click OK.

Audible Notification If this is selected, error message will be accompanied with a beep.

for Error Messages Information (as opposed to error) messages never come with a beep.
Log Messages to Specifies message log file name. All messages will be written to this file.
File Writing method depends on the radio button with two options:

Overwrite Log Fle For every session, erase previous log file if exists, and create a new one.
After Each Start

Append Messages Append messages to the existing log file. In this case log file can grow
to Log Fle without limit.

3.2.3.4.6 The Editor Otions Dialog

The ChipProg-02 software includes a built-in Scripts Files editor. The Editor Options dialog provides
access to editor settings and includes the following tabs.

General Editor Settings tab,

Key Mapping tab.

3.2.3.4.6.1 The General Tab

The General tab of the Editor Options dialog has settings for common options that apply to every Source

window.

Dialog Control Description

Backspace Unindents Toggles Backspace Unindent mode (see below).

Keep Trailing Spaces When this boxis checked, the editor does notremove trailing
spaces in lines when copying text to a buffer or saving it to a disk.
When the boxis unchecked such spaces are removed.

Vertical Blocks If checked, the Vertical Blocks mode is enabled for block operations.

Persistent Blocks If checked, the Persistent Blocks mode is enabled for block
operations.

Create Backup Fle If checked then each time a file in the Source window is saved
ChipProg-02 creates a back-up file (with file name extension *.BAK).

Horizontal Cursor If checked, the cursor will have the shape of a horizontal line, similar

to DOS command prompt.

© 2017 Phyton, Inc. Microsystems and Development Tools

68

CPI2-B1 In-System Device Programmer

CRI/LF at End-of-file
Syntax Highlighting
Highlight Multi-line

Comments

Auto Word/AutoWatch Pane

Full Path in Window Title

Empty Clipboard Before
Copying

Convert Keyboard Input to
OEM

AutoSave Fles Each ... min

Tab Size

Undo Count

Automatic Word Completion

Indenting

If checked, a carriage return/line feed sequence will be added to the
end of the file (if it does not have it already) when saving file to disk.

If checked, forces syntax highlighting for language elements.

If checked, enables highlighting of multi-line comments. By default,
only single-line comments are highlighted.

If checked, new Source windows will have Auto Word/AutoWatch
pane at their right, and the automatic word completion function will
be enabled.

If checked, the Source window caption bars display full path to the
open file.

If not checked, previously kept data remains retrievable after copying
to the clipboard.

If checked, the Source window converts input characters from MS
Windows character setto OEM (local) character set that
corresponds to your localized version of Windows operating
system. Also, see note below.

If checked, ChipProg-02 will save the file being edited every ‘X
minutes. The value of ‘X can be selected from a list.

Sets the tabulation size for text display. Possible values are from 1 to
32. Ifthe file being edited contains ASCII tabulation characters, they
will be replaced with the number of spaces equal to this tabulation
size.

Sets the maximum number of available undo steps (512 by default).
Maximum allowed value is 10000 steps; however, larger values
increase the editor's memory usage.

If the Enable boxis checked, it enables the automatic word
completion function. The Scan Range drop-down list sets the
number of text lines to be scanned by the automatic word
completion system.

Toggles automatic indentation of new lines created on pressing.
Enter.

NOTE 1. Convert Keyboard Input to OEM box only needs to be checked when adding characters to a file
with OEM character encoding in the Source window. To only display such file correctly without modifying
it, select the Terminal font for use in Source windows. This can be done in the Fonts tab of the
Environment dialog: select Editor in Windows list and press the Define Font button.

NOTE 2. The Backspace Unindents mode establishes the editing result from pressing the Backspace
keyin the following four cases, when the cursor is positioned at the first non-space character in the line
(there are several spaces between the first column of the window and the first non-space character):

Backspace Unindent enabled

Backspace Unindent disabled

Insert mode

Any preceding blank spaces in the
line are deleted. The rest of the line
shifts left until its first character is in
the first column of the window.

One space to the left of the cursor is
deleted. The cursor and the rest of the
line to the right of the cursor shift one
position left.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 69

Overwrite mode The cursor moves to the first column Onlythe cursor moves one position
of the window. The textin the line left. The text in the line remains in
remains in place. place.

3.2.3.4.6.2 The Key Mappings Tab

You can manage the list of available editor commands in the Key Mappings tab of the Editor Options
dialog. You can add and delete editor commands, assign or reassign hot keys for new and built-in
commands.

In the list, the left column shows command descriptions, corresponding command types are in the right
column. The term Command refers to a built-in ChipProg-02 command; Script NNN refers to an added
user-defined command. Two columns on the right specify hot key combinations that invoke the
command, if they are defined.

Dialog Control Description
Add Opens the Edit Command dialog for adding a new command to the listand

setting up the command parameters.

Delete Removes a selected user-defined command from the list. Any attempt to
remove a built-in command is ignored.

Edit Opens the Edit Command dialog to change the command parameters. For
built-in commands, you can only reassign the hot keys (the Command
Description and Script Name boxes are not available).

Edit Script Fle Opens the script source file of this command in the Script Source window.
Creating new commands

To create a new command, you should develop a script for it. In fact, you add this script to the editor, not
the command. This means that your command is able to perform much more complex, multi-step
actions than a usual editor command. Moreover, you can tailor this action for your convenience, or for a
specific work task or other need. Your scripts may employ the capabilities of the scriptlanguage with its
entire set of built-in functions and variables, text editor functions and existing script examples.

Ascriptsource file is an ASCII file. To execute your command, the editor compiles the script source file.
Note that before you can switch to using the script which you have been editing, you mustfirst save it to
the disk so that ChipProg-02 can compile it.

Script source files for new commands will reside only in the KEYCMD subdirectory of the ChipProg-02
system folder. Several script example files are available in KEY CMD. For more information about
developing scripts, see Script Fles.

This Edit Command dialog defines parameters for a new or existing command.

Control Description
Command Enter the command description here (optional). Text entered in this box will
Description be displayed in the list of commands, to ease identification of the command.

© 2017 Phyton, Inc. Microsystems and Development Tools

70 CPI2-B1 In-System Device Programmer

Script Name Name of the script file thatimplements this command.
Define Key 1 Opens a special dialog boxwhere you can assign two hot key combinations.
Define Key 2

Script source files for commands will reside onlyin the KEYCMD subdirectory of the ChipProg-02
system folder. Enter the file name only, without the path or extension.

Notes
1. You should not specify any key combinations reserved for Windows (e.g. Alt+— or Alt+Tab).

2. We do not recommend assigning any combinations already used for commands in the Source
window or ChipProg-02, as you'll have fewer ways to access those commands. Some examples
are Alt+F, Shift+F1, Ctrl+F7 which open application menus; pthers are local menu hot keys of the
editor window.

3. You can use more than one modifier key in the keystroke combinations. For example, you can use Ctrl
+Shift+F or Ctrl+Alt+Shift+F as well as Ctrl+F combination.

4. Hotkeys for some built-in commands cannot be reassigned (e.g. cursor movement keys).

3.2.3.5 The Commands Menu

This menu items invoke main commands (a.k.a. functions) that control programming process - from
Blank Check to Auto Programming, mode switches as well as some utility commands. Most

Commands | Scripts Window Help

Blank Check F&
Program Fa
Verify F10
Read F11
Erase F7
Auto programming F12
Self-Tests...

Switch to Stand-Alone mode..,
Switch to Simplified User Interface...

Local menu Ctrl+F10, Ctrl+Enter
Calculator... Shift+F4
Command Hot Description
key
Blank Check Launches the procedure of checking the target device

F8 before programming to make sure it is blank. Programming
of certain memory devices does not require erasing them
before re-programming. For such devices the Blank
Check command is disabled and shown grayed out on the
screen.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces

Program

Verify

Read

Erase

Auto Programming

Self-Tests

Switch to Stand-Alone

mode

Switch to Simplified

User Interface
Local menu

Calculator

3.2.3.5.1 Calculator

71

F9 Launches the procedure of programming the target device,
i.e. writes the contents of the buffer into the target device’s
cells.

F10 Launches the procedure of comparing the information
taken from the target device with the corresponding
information in the buffer.

F11 Launches the procedure of reading the content of target
device cells into the active buffer.

F7 Launches the procedure of erasing the target device.
Some memory devices cannot be electrically erased. In
this case the Erase command is disabled and shown
grayed out on the screen

F12 Launches the Auto Programming.

Launches testing the CPI2-B1 hardware. In case of failure
the diagnostic results screen will open.

Switches the CPI2-B1 from the computer-controlled mode
to standalone operation mode.

Hides a standard GUI and replaces it with a preset
Simplified User Interface.

Opens local menu of the active window.

Opens Calculator dialog which performs calculator
functions.

The primary purpose of the embedded calculator is to evaluate expressions and to convert values from
one radix to another. You can copy the calculated value to the clipboard.

Control
Expression
Copy As
Signed Values

Display Leading
Zeroes

Copy
Clr
Bs
0x
>>
<<

Mod

Description

The textfield for entering an expression or a number.
Specifies format of the result to copy to clipboard.

If checked the result of calculation will be interpreted and displayed as a
signed value (for decimal format only).

If checked, binary and hexadecimal values retain leading zeroes.

Copies resultto clipboard using format set by Copy As radio button.
Clears the Expression text box.

Deletes one character (digit) to the left of the insertion point (Backspace).
Inserts "Ox".

Shifts expression to the right by specified number of bits.

Shifts expression to the left by specified number of bits.

Calculates the remainder of division by specified number.

© 2017 Phyton, Inc. Microsystems and Development Tools

72 CPI2-B1 In-System Device Programmer

While you are typing the expression in the Expression field, a drop-down list box ChipProg-02 tries to
evaluate the expression and immediately display the result in different formats in the Result area. States
of Copy As radio button and two check boxes in this area define format of the result.

You can assign values to program variables and SFRs by typing an expression that contains the
assignment. For example, you maytype SP = 66h and the value of 66h will be assigned to SP.

Examples of expressions:
0x1234
-126
main + 33h
(float)(*ptr + RO)
101100b & OxF

3.2.3.6 The Script Menu

The Script menu contains several commands related to script files.

The ChipProg-02 contains a script language interpreter. Its purpose is automation of programming
operations by mastering complex procedures involving both the device programmer and the programmer
operator's actions. The ChipProg-02 supports composing and executing script files (SF). Working with
scripts is describe in the Script files topics.

Commands in this menu are user-configurable, and the list can be expanded by adding new items
(commands). To add a new item to the menu, place a script file into current folder or into the ChipProg-02
installation folder. The first non-empty line of any script file must contain three forward slashes followed by
a title that will appear in the Scripts menu:

/l/<Menu itemtitle>

When ChipProg-02 builds the Scripts menu, it searches the current folder and its installation folder for
*.CMD files whose first line starts with '///' (please remember that //' denotes beginning of a single-line
comment) and inserts the text following '///' into the Scripts menu.

When you select an item from the Scripts menu, click the Start button, ChipProg-02 launches the selected

script.

ﬁ Start... Opens the Script Fles dialog from which you can
New Script Source Create a new Script Fle text.

Q Open Watches Opens the Watches window.

window
Add watch... Adds watch to the Watches window .
Editor window Opens a list of the commands to Compose a new, Open, Save,
Save as, Print a script file. of the Editor window.

Text Edit Edit a list of the commands for editing a selected Script Fle
Example Scripts Invokes the

Help on this menu

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 73

Working with scripts is describe in the Script files topics.
3.2.3.7 The Window Menu

This menu lets you control how the windows are arranged within the computer screen. The list of open
windows is shown in the lower part of the menu. By choosing a window in from list you activate it and bring
it to the foreground.

Command Description
Tile Arranges all windows without overlap. Makes the window sizes

approximately equal.

Tile Horizontally Arranges all windows horizontally without overlap. Makes the window
sizes as close to each other as possible.

Cascade Cascades windows.

Arrange Icons Arranges icons of minimized windows.

Close All Closes all windows.

3.2.3.8 The Help Menu

This menu gives access to the help system. See also, How to Get On-line Help.

Command Description

Contents Opens the contents of the help file.

ChipProg-02 User's Guide Opens complete User's Guide PDF file

(PDF)

ChipProg-02 Quick Start Opens Quick Start Manual PDF file

Manual

Search for Help on Opens a dialog for searching the tool's help system for the content,
indexand keywords.

License Management... Opens the dialog that displays a list of current licensed features and
device libraries available for this CPI2-B1 and enabling to upgrade
them.

Visit Phyton WEB site Opens the www .phyton.com site in your default Internet browser.

Create problem report If the CPI2-B1 crashs you can create a problem report and send a it

to Phyton technical support. ChipProg-02 generates problem reports
onlywhen itwas launched in the Diagnostic mode. In case the
programmer is running in a working mode click on this menu line
causes restarting itin the Diagnostic mode and then leads to
sending a report to Phyton technical support.

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com

74 CPI2-B1 In-System Device Programmer

Check for updates

Phyton HelpDesk

About CPI2-B1

3.2.3.8.1 License Management Dialog

Opens the Update Checking dialog that checks whether you are
running the most recent software version of ChipProg-02 and
enables automatic checking with different period of time.

Opens the HelpDesk web page where you can open a new ticket for
Phyton technical support, track your old tickets or send a question to
Phyton.

Displays the ChipProg-02 and CPI2-B1 software versions, paths
selected target device type, and device type and manufacturer, the
CPI2-B1 serial number, memory card capacity and some other
parameters.

This dialog displays a list of currentlicensed features and device libraries available for this CPI2-B1. It also
enables adding new features and licenses.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 75

@ License Management =

License options on Phyton WEB site

Extended Features @ Apply license

License Feature Status
CPI2-ACI Using the Application Control Interface (ACI) Enzbled

Device Libraries

License Device Library Status
[00] Basic Basic lbrary Enabled
[01] CPI2-D-ATCM Microchip & Atmel Cortex device library Enabled
[02] CPI2-D-CYCM Cypress Cortex device lbrary Enabled
[03] CPI2-D-FRCM NXP & Freescale Cortex device lbrary Enabled
[06] CPI2-D-ELMOS Elmos controller library Mot licensed
[08] CPI2-D-SLCM Siicon Labs Cortex device library Enabled
[09] CPI2-D-STCM ST Microelectronics Cortex device lbrary Enabled
[10] CPI2-D-TICM Texas Instruments Cortex device library Enabled
[11] CPI2-D-TOCM Toshiba, Maxim Cortex device library Enabled
[12] CPI2-D-ALPLD Alera PLDs device lbrary Enabled

[13] CPI2-D-FR0O812 NXP & Freescale HC08/508/512 device lbrary Enabled
[14] CPI2-D-TI430 Texas Instruments MSP430 device library Enabled
[15] CPI2-D-5TM8 ST Microelectronics ST7/STM8 device lbrary Enabled
[16] CPI2-D-RE26 Renesas RL78/RX200/RX6xxx device lbrary Enabled

[17] CPI2-D-UPD78 Renesas uPD78xx device lbrary Enabled
[18] CPI2-D-5L51 Silicon Labs EFM8/8051 device library Enabled
[19] CPI2-D-PIC32 Microchip PIC24/32, dsPIC30/33 device lbrary Enabled
[20] CPI2-D-RESC Renesas R8C device library Enabled
<" Close | ‘ (7]

Click on the License options on Phyton WEB site link opens a page in the CPI2-B1 item catalog where you
can check a list of all currently available licenses - both Extended Features and Device Libraries licenses.

© 2017 Phyton, Inc. Microsystems and Development Tools

76 CPI2-B1 In-System Device Programmer

The Extended Features pane lists the licenses that expands a set of CPI2-B1 default features. For

example, the CPI2-ACl license enables use of the Phyton ChipProg-02 Software Development Kit (SDK),
On-the-Fly Control utility and integration with NI LabVIEW software.

The Device Libraries pane lists Device Librarylicenses available atthe moment of building the ChipProg-
02 distributive. The Status column indicates the licenses physically tided up to the CPI2-B1 with a certain

serial number as "Enabled" in green color, the licenses which can be added - as "Notlicensed" in grey
color.

If you have purchased a new license or licenses Phyton sends you some binaryfile. To update the license
listfor a CPI2-B1 with a certain serial number click the Apply license file... button, browse for the file on
your PC, pick it and click Open to update the license list.

3.24 Windows

The following types of ChipProg-02 windows can be open from the View menu:

Program manager

Device and Algorithm Parameters' Editor
Buffer

Device Information
Console

In addition there are two types of windows associated with ChipProg-02 script files:
e Editor
e Watches

3.2.4.1 The Device Information Window

This window displays the type of selected target device and a link opening a connection diagram
between the TARGET connector of CPI2-B1 and a selected target device (DUT).

Dévice Information FEEE
Socket Scheme Nu‘tesl
Device: Microchip PICT6LF18875-1/PT [ISP HY Mode]

Device Type: Microcontroller > PlCmicro
Connection to the target device

It is highly recommended to verify correctness of the CPI2-B1 - to - DUT connection before beginning
your programming session either by clicking the Connection to the target device link in this window
or on the http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting web page.

© 2017 Phyton, Inc. Microsystems and Development Tools

http://phyton.com/products/isp/chipprog-isp2-family/cpi2-b1-connecting

Control Interfaces 77

3.2.4.2 The Device and Algorithm Parameters Window

The Device and Algorithm Parameters Editor window displays and allows editing (where appropriate)
target device internal parameters and settings. The edited settings must be programmed into target
device by executing the Program command in the Program Manager window.

Device and Algorithm Parameters Editor
Edit | MinValue | MaxValue | DefaultValue | AllDefault
Mame Value Description
Device Parameters
WEuse Bits Fuses
- Lock bits Lock bits
- Calibration Byte 0Ch Calibration value for the internal RC Oscillator
Algarithm Parameters
- Algorthm "In-System Programming” | Programming algorithm

- Oscillator Frequency
- Delay after Vcc is On (
- Programming Mode

Changeable parameters shown in blue color

Oscillator frequency

Delay afterVee is On
Programming Mode

Fower supply voltage
Changed values shown in red color

Parameters are displayed as two groups: Device Parameters and Algorithm Parameters. The groups
are separated by a light blue stripe.

© 2017 Phyton, Inc. Microsystems and Development Tools

78

CPI12-B1 In-System Device Programmer

Device
Parameters

This group includes parameters specific to each selected device, such as sectors for
flash memory devices, lock and fuse bits, configuration bits, boot blocks, start
addresses and other settings for microcontrollers. Usually these parameters
represent certain bits in a microcontroller Special Function Registers (SFRs). Some
of the SFRs can be set in the CPI2-B1 buffers in accordance with device manufacturer
data sheets. Howewer, setting the parameters in the Device and Algorithms
Parameters window is more intuitive. It is impossible to specify all features that may
become available in future devices; therefore not all possible parameters for new
devices are described here.

Important! Changing device parameters
in the Device and Algorithm
Parameters Editor window does not
immediately result in corresponding
changes inside the target device. By

Program Manager

Program Manager | Options | Statistics

| Device Status: Auto-detect off

Buffer: [BLrFFer #0: Code (128 KB), bytes, User {128 KE), byteg

Functions

.. . --L|
editing the cha_nges you Ju_st prepare a i sEr S @ Exi
new configuration that is different from the : -
default for the device to be programmed. L F:e"e‘“"’“s:
The parameters will be changed inside I
target device only when you execute the i Edt A
Program function in Device _- " [@ H
. . Programming memery
Parameters group in the Function pane
of the Program Manager window as
shown in the illustration.
Algorithm This group includes parameters of the programming algorithm for the selected device
Parameters | —including the algorithm type and editable programming wvoltages.

The window has three columns: 1) parameter name, 2) parameter value or setting, 3) a short
description. Names of the editable parameters are shown in blue; other names are shown in black.
Default values in the Value column are shown in black; after changing a parameter the new value will be
shown in red. If the value is too long to display, it is shown as three dots (‘..."). The red color of these
dotst means that the parameter has been edited.

To edit a parameter double click its name. Some editable parameters are represented by a group of
check boxes, others have to be typed into text fields.

Local toolbar located at the top of Device and Algorithm Parameters Editor window contains the
following buttons:

Toolbar Button Description

Edit Opens a dialog to modify highlighted parameter in the format most
convenient for the parameter. Double click on a highlighted
parameter also opens such dialog.

Min.Value If the parameter being modified is restricted to values from a certain

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 79

range, clicking on the Min.Value button sets the highlighted
parameter to the minimum allowed value.

Max Value If the parameter being modified is restricted to values from a certain
range, clicking on the Max.Value button sets the highlighted
parameter to the maximum allowed value.

Default Clickin on this button returns the highlighted parameter to the
default value.

All Default C!ICdeng on this button sets default values for all parameters in the
window.

Depending on the type of a parameter ChipProg-02 offers the most convenient format for editing the
parameter:

Method of Editing Description

Drop-down menu When a parameter value may be picked from a few preset values,
the dialog shows a drop-down list of such values. Highlight a new
value in the list and click OK to complete editing. For example,
some microcontrollers can be programmed to work with different
types of clock generators, so the menu prompts to select one of
them.

Check Box dialog When some options can be set or reset, the dialog appears in a
form of several boxes showing the default or recently set option
states. To toggle this behavior, check or uncheck the box. For
example, some microcontrollers allow locking of particular part of
memory by setting several lock bits, so the menu prompts to select
lock bits represented as a set of check boxes.

Customizing the When a parameter value may be set to any value within allowed
parameter range, the dialog offers a box for entering a new value and a history
list displaying a few recently set values. The dialog prompts with the
min and max values and restricts entry to values in the allowed

range. This type of editing is used for custom values of Vcc and Vpp
wltages.

3.2.4.3 The Buffer Dump Window
The Buffer Dump window is used to display contents of memory buffer.
CPI2-B1 provides flexible buffer management:

. You can create an unlimited number of buffers. The number of buffers that can be created is
limited only by the available computer RAM.

. Every buffer has a certain number of sub-levels depending on the type of target device.
Each sub-lewel is associated with a specific section of the target device address space. For

© 2017 Phyton, Inc. Microsystems and Development Tools

CPI2-B1 In-System Device Programmer

example, for the Microchip PIC16F84 microcontroller, every buffer has three sub-lewvels: 1)
code memory; 2) EEPROM data memory; 3) user identification.

This flexible structure facilitates manipulating with several data arrays mapped to different buffers. To
open a Buffer Dump window, select Main Menu > View > Buffer Dump..

Buffer #0 - Code (128 KB), words: 0000 [0000] [B|=I=|E3| Buffer #0 - Data (4 GB),
Code |Dlocation Data Code IDlocation O

Q Addr | Load | Save |Configure Buffer| Setup | View Q Addr | Load |

File: ANETMP\UserDLLGS dll S File: Mone
Checksum: 00153598 [Summation, discard overflow] Checksum: FFDFIAE2
pOaa: 5A4D BP90 0OB3 GeRe | M [pReen2e6e: 74 83
poad: 0PBd BPE6 FFFF @008 [pRaea21e;. 28 00
POAS: OPBE BGPEO POBE GORO pReeR220: 3B 28
peac: 0940 GPE0 POBE CO08 @ Wl | BE0RB238: Eb FF
- PREeR248: 00 EB8
Q Addr | Load | Save |Conf|gure Buffer | Setup | View APeRA250: 00 A8
1086: 58468 65535 35650 34251 d H | pPPPE260: AC 00
1884 20888 13065 59602 2458 (t 32 PPERE270: E6 FF
1008 : @ 5867 6120 13 1. 0PEPRI8P - BA 30
18aC: 59648 65208 65535 64131 PPERE290: ER E6
1816: 29955 13863 59593 3130 |ul 3[B: 0PPER2AR - SF EA
1814: %) 448 @ 18432 [H APORG2EBA: 48 81
1818: 35979 16420 1 18432 @ 0 H v | peeee2c0: 48 81

The figure above shows three Buffer Dump windows representing three parts of the same buffer:

e Window #1 (the largest) shows buffer contents starting at address Oh.

e Window #2 shows the same buffer contents starting at the same address, displaying data in
decimal format.

e Window #3 shows the data starting at address 200h.

The leftmost column of the above windows shows absolute address of the first cell in each row. The
addresses always increment by one byte: 0, 1, 2.... Each address is followed by a colon (;). When
you resize a window, the addresses shown in the address column automatically change in
accordance with the number of data items in each line. Some windows may be split into two panes —
the left pane showing data in a selected format, and the right pane showing the same data in ASCII
format.

The window has a toolbar for invoking settings dialogs and commands. Full path to the loaded file
and checksum of the dump are displayed beneath the toolbar.

Local Menu and Toolbar

The context-sensitive menu brought up by a right mouse click is used to invoke context commands and
dialogs of the Buffer Dump window. Most, but not all, local menu entries are duplicated by local toolbar
buttons at the top of the window. Following are local menu and toolbar items:

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 81

Menu ltem Toolbar Description
button

New address... Addr Opens the Display from Address dialog.

Load file to buffer... Load Opens the Load Window Dump dialog.

Save datatofile... Save Opens the Save Window Dump dialog.

Configure buffer... Configure opens the Configuration Window Dump dialog.
buffer

Window setup... Setup Opens the Window Dump Setup dialog.

Editing in the buffer dump windows is disabled by
default, so you can only view the data. If this box is

- it di View " ! :
View only, edit disabled unchecked editing will be enabled and you will be able
to modify value under the cursor.
Modify data Modify Opens the Modify Data dialog. This is only enabled

when the View only, edit disabled is unchecked.

Operations with memory

blocks Block Opens the Operations with Memory Blocks dialog.

Swap fields No button Moves the cursor between right and left window panes.

3.2.4.3.1 The 'Configuring a Buffer' dialog

The dialog allows to configure buffer dumps using the most convenient way, and name or rename open
buffers. By default, the first opened buffer is named ‘Buffer #0’, the next buffer is named ‘Buffer #1’,
and so on. You can, howewer, rename buffers to your liking.

© 2017 Phyton, Inc. Microsystems and Development Tools

82

CPI2-B1 In-System Device Programmer

Buffer Configuration

Buffer name, Code settings |D location Data

Buffer Mame

Buffer #0 w

Size of layer 'Code”.

128 KB b

Fill layer 'Code' with data:

Before loading file
[v] Atter device is selected

Data to fill layer with:

(@ Predefined (Ix3FFF)
() Custom: OxFF
() Random

Shrink buffer size when device is selected

< 0K i Cancel © Help

Initially each buffer is allocated a minimum of 128K of PC RAM and the ChipProg-02 program fills the
buffer with a predefined pattern (usually OFFh). You can customize these buffer settings - check the
Custom radio button and type in the pattern to be used to fill the buffer..

By default ChipProg-02 program fills the buffer sub-layers with default data pattern, usually 'FF's or
zeros. By checking these boxes you specify when the 'Code’ layer fills with default information - before
loading the file or right after device type has been chosen or both.

Leaving the "Before loading file" box unchecked enables merging multiple files in a single buffer with
following programming a merged file into a target device. This, for example, can be convenient for
merging code with configuration data for programming microcontrollers if the configuration file exist
separately from the main code file.

3.2.4.3.2 The 'Buffer Setup' dialog

The dialog allows controlling the data presentation in the Buffer Dump window. You can open the dialog
using the Windows Setup command of the local menu or by clicking the Setup button on the local

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 83

toolbar.

Control

Description

Buffer:

Displays a list of all open buffers. Programming functions will be
applied to the active one.

Display Format

Three radio buttons select the format for the data displaye: binary,
decimal or hexadecimal.

Display Data As:

Four radio buttons select the format of data presentation in the
buffer: 1, 2, 3 or 4 bytes.

Options

Options to customize display format.

ASCIl pane

If checked, the right pane will display ASCII characters
corresponding to the data in the buffer dump.

Display checksum

If checked, calculated checksum will be displayed in the blue strip
over the data dump, beneath the local toolbar.

Limit dump to sub-layer
size

If checked, dump window will display part of the memory whose
size is equal to the size of the active sub-layer.

Signed decimal and hex
values

If checked, the most significant bit (MSB) of the data shown in
binary or hexadecimal formats will be treated as a sign. If MSB=1
the data is negative, if MSB=0 they are positive.

Always display '+' or '-'

This is a sub-setting for the Signed decimal and hex values option. If
both boxes are checked then the signs '+' and -' will be displayed.

Leading zeroes for decimal
numbers

If checked, data in decimal format will be shown with leading
zeros; for example, 256 will be shown as 00000256.

Reverse bytes in words
(LSB first)

If checked, the order of bytes in words will be reversed so that the
MSB follows the LSB.

Reverse words in dwords

If checked, the order of 16-bit words in 32-bit words will be
reversed.

Reverse dwords in gwords

If checked, the order of 32-bit words in 64-bit words will be reversed.

Non-printable ASCII
characters

Characters in the range 0x00...0x20 and 0x80...0xFF are non-
printable. Following options customize display of non-printable ASCII
characters in the ASCII pane of the buffer dump window.

Replace characters
0x00...0x20

If checked, all characters in the range 0x00...0x20 will be replaced
with the dot (.") or space (**). Pair of radio buttons Replace with
selects the replacement character: dot (.") or space (*").

© 2017 Phyton, Inc. Microsystems and Development Tools

84 CPI12-B1 In-System Device Programmer

Replace characters If _checked, all characters in Fhe range 0x80...0xFF will be re_placed
with dot (") or space (*'). A pair of radio buttons Replace with

0x80...0xFF
selects the replacement character: dot ('.") or space (').

3.2.4.3.3 The 'Display from address' dialog

The dialog allows to seta new starting address for the visible part of the Buffer Dump window.

Element of dialog Description

Type new address to Here you may enter any address within valid range.
display from:
History Displays a list of previously entered addresses. You can pick one to set

as starting address for the buffer dump.

3.2.4.3.4 The 'Modify Data' dialog

The dialog allows to edit data in the Buffer Dump window. The dialog can be invoked only when the View
toolbar button if off, otherwise editing is disabled. To modify a data item in the buffer move cursor to its
location and click the Modify toolbar button. You will be able to enter a new data value in the pop-up box
or pick one from the history list. Alternatively, select a location by moving cursor to it and enter new

value using the PC keyboard.
3.2.4.3.5 The 'Memory Blocks' dialog

The ChipProg-02 program supports complex operations with memory blocks. This dialog controls
operations with blocks of data within a selected buffer or between different buffers.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 85

df Operations with memory block

Source Operation Destination
Buffer: i@ Fill with valuefs); xFD - Buffer:
i@ Buffer #0 (71 Search for data: (@) Buffer #0
() Copy
(7) Compare
Layer: - Invert Layer:
@ Code (128 KB). bytes D AND with vaie: @ Eode (178 Kej yies
©) User (128 KB), bytes © OR with value: ©) User (128 KB), bytes
) Data (128 KB), bytes () XOR with value:) Data (128 KB), bytes
Start address: () Swap bits of data bus Start address:
0 - (7) Swap bits of address bus | < - 0
End address:
B<1FFFF -
Full range
of OK] [ﬁ Cancel] ’ﬂ Help

—

The dialog has three columns. Source, the left column, describes the source memory area used in
operations described in the middle column. Operation result will be placed in the area described by
Destination, the right column. By default, destination is same as source. Two operations — Fill and
Search — do notrequire destination; if any of these two operations is chosen, Destination radio button

will be disabled.

Control

Start Address
(of the Source)

End Address
(of the Source)

Full Range
(of the Source)

Start Address
(of the Destination)

Description

Starting address of the memory area in the selected Source buffer to
which the operation will be applied.

Ending address of the memory area. Ending address can be entered for
the Source area only. Once the source address range is defined,
program automatically calculates destination area ending address.

Sets the starting and ending addresses to span entire address space of
selected target device.

Starting address of the memory area in the Destination buffer where the
result of the selected Operation will be stored.

The following operations are available via this dialog. Operation starts when you click OK in the dialog

box (see notes below).

Operation
Fll with Value

Description

Fills the source buffer with a value (or a sequence of values) specified in
the text box at the right.

© 2017 Phyton, Inc. Microsystems and Development Tools

86

CPI2-B1 In-System Device Programmer

Search for Data

Copy

Compare

Invert

Calculate Checksum

Negate Result

Write Result to

Destination

AND with Value

ORwith Value

XOR with Value

Notes

1. Source and destination memory areas may overlap; since operations on memory blocks are carried

Searches the source memory area for a particular value (or a sequence
of values) specified in the text box at the right.

Copies contents of the source area to the destination address. Ablock
can be copied within the same address space or to another one.

Compares contents of source and destination memory areas. The sizes
of source and destination areas are equal. If there is a mismatch, a
mismatch message boxwill request permission to continue the
comparison process.

Inverts contents of the source area bit-wise and stores the resultin the
destination area.

Calculates a 32-bit checksum for the source area. The calculation is
done by simple addition. See note below.

If checked, the 32-bit checksum will be subtracted from zero (this is a
widely used method of checksum calculation).

If checked, the 32-bit checksum will be written to the destination sub-
level at destination Start Address. If this boxis cleared, the checksum
wil onlyl be displayed in a message.

Performs bit-wise AND operation on the contents of the source memory
area using operand specified in the text box on the right. The resultis
stored in the destination area. See notes below.

Performs bit-wise OR operation on the contents of the source memory
area using operand specified in the text box on the right. The resultis
stored in the destination area.

Performs bit-wise XOR operation on the contents of the source memory
area using operand specified in the text box on the right. The resultis
stored in the destination area.

outusing a temporary intermediate buffer, the overlap does not cause corruption of results.

2. The Copy and Compare commands use blocks specified in the Source address space and the
Destination address space.

3. The checksum is calculated as a 32-bit value by simple addition. If a memory space has byte

organization, then 8-bit values will be added. If it has word organization then 16-bit values will be
added.

4. Logical operations (AND, OR, XOR) are performed on the contents of the Source address space, while
the operation resultis written to the Destination address space. The program automatically converts
the operands to the word size of the selected type of memory (16-bit for Prog, Datal6, Reg and
Stack memory, 8-bit for Data8 memory).

3.2.4.3.6 The 'Load File' dialog

The dialog defines how a file is loaded into the buffer.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 87

File Name: Enter a full path to the file in this box, pick the file name from a drop-
down menu list, or browse files on your computer or network.
Fle Format: Select format of the file to be loaded by checking one of the radio

buttons in the Fle Format field of the dialog.

Buffer to load file to:

Select buffer to load the file into, by checking one of the Buffer# radio
buttons. There may be just one such button.

Layer to load file to:

The Buffer to load file to can have more than one memory layer. Select
the layer into which the file will be loaded by checking one of the radio
buttons. There may be just a single button available for selection.

Start address for binary
image:

Files in Binary format do not carry any address information. When
loading binary files you have to specify the starting address for
loading. In case the file to be loaded is a binary image enter starting
address in the box here.

Offset for loading
address:

Files in formats other than Binary may carry information about the
starting address for the loading. If the file to be loaded is not a binary
image, enter the offset for the file addresses in the box here. The
offset can be positive or negative.

3.2.4.3.6.1 File Formats

The ChipProg-02 program supports a variety of file formats that can be loaded to the CPI2-B1 buffers.

Fle Format

Standard/Extended Intel
HEX (*.hex)

Binary image (*.bin)

Motorola S-record
(*.hex, *.s, *.mot)

Altera POF (*.pof)

Description

The Intel HEX file is a text file, each string of which includes the
starting address to load the data to the buffer, the data to load, line
checksums, and some additional information. The ChipProg-02
loader supports both Standard and Extended Intel HEX format.

Binary image contains only data. These data will be loaded to the
buffer beginning with the specified starting address.

The Motorola S-record is a text file, each line of which includes
starting address to load the data into buffer, the data to load, line
checksums, and some additional information. The ChipProg-02
loader supports all kinds of the Motorola S-records with filename
extensions .hex, .s, .mot.

The Altera POF-file is a text file, each line of which includes starting

© 2017 Phyton, Inc. Microsystems and Development Tools

88 CPI12-B1 In-System Device Programmer

address to load the data into buffer, the data to load, line
checksums, and some additional information. The format is mostly
used for programming PALs and PLDs.

JEDEC (* jed) This format is used for programming PALs and PLDs. A JEDEC-ile
' includes starting address to load the data into the buffer, the data to
load, test-vectors, and some additional information.

Xilinx PRG (*prg) The Xlinx PRG-file is a text file, each line of which includes starting
address to load the data into buffer, the data to load, line
checksums, and some additional information. The format is used for
programming the Xilinx PLDs.

Holtek OTR (*.otp) This format is presented by Holtek company. An OTP-file includes
the starting address to load the data into the buffer, the data to load,
line checksums, and some additional information.

Angstrem SAV (*sav) This format is pre§ented by Angstrem company. A SAV-file
includes the starting address to load the data into the buffer, the
data to load, line checksums, and some additional information.

ASCII Hex (*xt) The ASCII TXT-file includes the starting address to load the data

into the buffer, the data to load, line checksums, and some
additional information.

3.2.4.3.7 The 'Save File' dialog

The dialog defines how the buffer is to be saved to a file.

Control Description

Fle Name: Enter a full path to the file in this box, pick the file name from a drop-
down menu list, or browse files on your computer or network.

Addresses Start and End Addresses define buffer address range that will be
written to the Fle. To save entire buffer click the All button.

Fle Format: Selected format of the file to be written by checking one of the radio
buttons in the FHle Format field of the dialog.

Buffer to save file from: Select the source buffer to write into the file by checking one of the
Buffer# radio buttons. There may be just one such button available.

Sub-level to save file The Buffer to save file from can.have more than one memory layer.
from: Select the source layer by checking one of the radio buttons. There may
be just one such button available.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 89

3.2.4.4 The Console Window

The Console window displays messages generated by the ChipProg-02 program. These messages fall
into two categories: the CPI2-B1 error messages and what-to-do prompts. The window accumulates
messages even when it is closed. You can open it at any time to view the last 256 messages, and get
help for any of them. Error messages are shown in red color, others in black.

The window should be large enough to see several messages. To save screen space you can close
the Console window and redirect all messages to pop-up message boxes. To do this, go to the
Configure menu > Environment > Misc tab and select the Always Display Message Box option.
Alternatively, you can select the Do not open box if Console window opened option, redirecting all
messages to Console window.

Click the Help button in the box to show the CPI2-B1 context-sensitive Help topic associated with the
error, or click the Close button and continue after correcting a parameter error.

Local Menu and Toolbar

The local menu contains Console window context commands and dialog calls. This menu can be
opened by a right mouse click in the window. Most, but not all, local menu commands are duplicated as
local toolbar buttons at the top of the window. Following are the local menu and toolbar commands:

Menu Command Toolbar Description
Button

Clear Window Clear Deletes all messages from the window

Opens context-sensitive Help topic associated with
Help on message MHelp - . S

the error or information in the highlighted message
Help on window No button Opens the Console window Help topic
Help on word under Opens the context-sensitive Help topic associated
cursor Nobution | \yith the word under cursor

3.2.45 The Program Manager Window

The Program Manager window is the primary screen object used by an operator to control the
CPI2-B1 in the GUI mode. While some windows can be closed during programming operation, the
Program Manager is supposed to be always open and visible. The window includes three tabs:

The Program Manager tab - by default this tab is open (see below)

The Options tab

The Statistics tab

The contents of the Project Manager and Options tabs depend on the CPI2-B1 programmers
working in single-programming and gang-programming modes. Below you can see the window
appearance for a CPI2-B1 device programmer operating in the Single Programming mode

© 2017 Phyton, Inc. Microsystems and Development Tools

90

CPI2-B1 In-System Device Programmer

3.2.4.5.1 The Program Manager tab

Control

This tab serves for setting major programming parameters, carrying out programming operations and
displaying the CPI2-B1 status.

Description

Displays the active buffer to which the programming operations

Buffer:

(functions) will be applied. A full list of open buffers is available here
via the drop-down menu.

Functions Shows a tree of functions available for the selected target device.
Some functions represent CPI2-B1 commands while others group
several sub-functions and can be expanded or collapsed. Double-
clicking on a function invokes the command and is equivalent to
single-clicking the Execute button (see below).

Blank check Checks if the target device is blank

Program Programs the target device (physically writes the information from active
buffer to the target device).

Read Reads contents of the target device into active buffer.

Verify Compares contents of the target device with contents of active buffer.

Auto Programming

Executes a preset sequence of operations (batch operations). The
sequence can be defined using the Auto Programming dialog. The
Edit Auto button opens this dialog.

Addresses

Here you can set the addresses for the buffer and the target device
to which the programming functions will be applied.

Device start:

Starting address of the target device physical memory which will be
programmed or read.

Device end:

Ending address of the target device physical memory which will be
programmed or read.

Buffer start:

Starting address of the buffer memory from which the data will be written
to the target device or to which the data will be read from the device.

There are three alternative ways to activate a highlighted function: a)

Execute _ } o
to click the Execute button; b) to double click on the function line; c) to
press Enter button on PC keyboard.

Repetitions: Any function can be executed repeatedly. The number of repetitions
can be set here.

Edit Auto Clicking on this button opens the Auto Programming dialog.

Operation Progress

Displays progress bar and the status (OK, failed, etc.) of current
operation.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 91

Besides generic functions such as Blank Check, Read, Verify, Program, Auto Programming, the Functions
window often includes collapsed submenu of functions specific to the selected target device. When expanded
it shows a list of commands for the parameters that can be setin the Device and Algorithm Parameters
editor window.

IMPORTANT NOTE!

Any changes made in the ‘Device and Algorithm Parameters’ window do not
immediately cause corresponding changes in the target device. Parameter settings
made within this window just prepare a configuration of the device to be programmed.
Physically, the programmer makes all these changes only upon executing an
appropriate command from the ‘Program Manager’ window.

3.2.4.5.1.1 Auto Programming

Each device has its own typical set of programming operations that usuallyincludes: Erasing, Blank
Checking, Programming, Verifying and often Protecting against unauthorized reading. The ChipProg-02
stores default batches of these programming operations for each supported device type. Abatch can be
executed by a simple mouse click or pressing the Start button on the programmer panel. Asequence of
functions (operations) can be customized via the Auto Programming dialog. To open this dialog click on the
Edit Auto button.

@t Edit Auto Programming Fu_n_ E@g
Selected functions Available functions
Blank Check Code: 0..0x2FFF, Buf. Start: 0 - Program
Pragram Code: 0..2FFF, Buf. Start: 0
Verfy Code: 0_FFF, Buf. Start: 0 + Read
Data: Blank Check Data: 0.[x7FF, Buf Start: 0 - Verfy
Data: Program Data: 0..0¢7FF, Buf. Start: 0 - Erase
Data: Verfy Data: 0..0x7FF, Buf. Start: O ¥ Remove >> = Data
Device Parameters: Fuse: Program - Blank Check
Device Parameters: Fuse: Verfy

- Program
- Read
- Verify
=) User
- Blank Check
- Program
- Read
- Verify
[=)- Device Parameters
- Fuse
‘- Program
Read
e Verify
= Lock Bits
‘- Program
----- Read
Edit function addresses. .. - Verify
e Checking memary
Restore defaults o7 Done] [2 Hep

© 2017 Phyton, Inc. Microsystems and Development Tools

92 CPI12-B1 In-System Device Programmer

A tree of all functions available for the selected device is shown in the right pane, Available functions.
To add a function to the batch highlight it in the right pane and click the Add button - the function will
appear in the left pane, Selected functions. The functions will be executed in the order in which they
are listed in the Selected functions pane, starting from the top. To edit a batch highlight the
command to be remowved and click the Remove button.

3.2.4.5.2 The Options tab

This tab contains controls for setting additional programming parameters and options:

Radio buttons in the Split data group control programming of 8-bit

Split data
memory devices to be used in microprocessor systems with 16-
and 32-bit address and data buses. In such cases buffer contents
have to be properly prepared in order to split single memory file into
sewveral smaller files.

Options

Check device ID This option is on by default, and the CPI2-B1 always erifies target
device identifier assigned by device manufacturer. If this box is
unchecked the program will not check device ID.

Reverse bytes order If checked, the ChipProg-02 will reverse byte order in 16-bit words

while it executes Read, Program, and Verify operations. This
option does not affect data in CPI2-B1 buffers.

If checked, the ChipProg-02 will make sure the target device is
blank before programming it.

Blank check before
program

If checked, the ChipProg-02 will verify the device content after it has

Verify after program
been programmed.

If checked, the ChipProg-02 will verify device content once it has

Verify after read
been read.

On Device Auto-Detect or The checked radio button in this group defines what CPI2-B1 will do
‘Start’ Button: upon when either 'Start' button has been pushed or when the
programmer detected the START signal applied to the pin #4 of the
CONTROL connector.

3.2.45.2.1 Split data

Radio buttons in the Split data group of the Option tab control programming of 8-bit memory devices
to be used in microprocessor systems with 16- and 32-bit address and data buses. In such cases

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 93

buffer contents have to be properly prepared in order to split single memory file into several smaller
files. Splitting the data allows to conwert data read from 16- or 32-bit devices in a way required to
create file images for writing them to memory devices with byte organization.

Radio Button

No split

Even byte

0dd byte

Byte O

Byte 1

Byte 2

Byte 3

Description

This is the default. The buffer is not split and is treated as an array
of single-byte data.

The data in the buffer is treated as an array of 16-bit words. The
buffer-device operations are conducted using even bytes only. For
example, programmer reads one byte of device data at address 0
and stores the byte in buffer location also at address 0. The byte
read from device address 1 will be stored in the buffer location at
address 2, etc.

The data in the buffer is treated as an array of 16-bit words. The
buffer-device operations are conducted with odd bytes only. For
example, programmer reads one byte of device data at address 0
and stores the byte in buffer location also at address 1. The byte
read from device address 1 will be stored in the buffer location at
address 3, etc.

The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #0 only.
For example, programmer reads one byte of device data at address
0 and stores the byte in buffer location also at address 0. The byte
read from device address 1 will be stored in the buffer location at
address 4, etc.

The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #1 only.
For example, programmer reads one byte of device data at address
0 and stores the byte in buffer location also at address 1. The byte
read from device address 1 will be stored in the buffer location at
address 5, etc.

The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #2 only.
For example, programmer reads one byte of device data at address
0 and stores the byte in buffer location also at address 2. The byte
read from device address 1 will be stored in the buffer location at
address 6, etc.

The data in the buffer is considered to be an array of 32-bit words.
The buffer-device operations are conducted with the byte #3 only.
For example, programmer reads one byte of device data at address
0 and stores the byte in buffer location also at address 3. The byte
read from device address 1 will be stored in the buffer location at
address 7, etc.

© 2017 Phyton, Inc. Microsystems and Development Tools

94 CPI12-B1 In-System Device Programmer

3.2.4.5.3 The Statistics tab

This tab displays statistics of programming session - Total nhumber of devices programmed during the
session, what was the yield (Good) and how many devices have failed (Bad). These statistics are
helpful when you need to program a series of same type devices. It is important to remember that
statistic counters are affected by executing the Auto Programming only, execution of other functions

has no effect on statistics.

Control

Clear statistics

Description

Resets the statistics.

Device Programming
Countdown

Normally the Total counter increments after each Auto
Programming; the Good and Bad counters also count up. The
ChipProg-02 reverses the counters to decrement their content (to
count down).

Enable countdown

If checked the ChipProg-02 will count the number of the
programmed devices down.

Display message when
countdown value reaches
Zero

If checked the ChipProg-02 will issue a warning when the Total
counter reaches zero.

Reset counters when
countdown value reaches
zero

If checked the ChipProg-02 will reset all counters when the Total
counter reaches zero.

Count only successfully
programmed devices

If checked the ChipProg-02 will count only successfully
programmed (Good) devices. All other statistics will be ignored.

Set initial countdown
value

Clicking on this button opens a field for entering a new Total
number that will then be decremented after each Auto

Programming.

Below you can see an example of Statistic tab displays programming session statistics for each of four
programming sites. Total number of devices that were programmed during the session, what was the
yield (Good) and how many devices have failed (Bad).

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 95

Program Manager =

Program Manager Options Statistics

Site# Total Remaining Good Bad
1 8 8 0
2 3] 7 1
3 8 8 0
4 3] 7 1
All 32 970 30 2
=] Clear statistics

Device Programming Countdown

[] Enable countdown
Display message when countdown value reaches zero
Reset counters when countdown value reaches zero

Count only successfully programmed devices

Setinitial countdown value...

Current initial value: 1000

3.2.4.6 The Memory Card Window

The window displays information about projects stored on memory cards in programmers, about limit
counter, and about serialization record counter. The window can be brought up using menu "View" ->
"Memory Card Window."

© 2017 Phyton, Inc. Microsystems and Development Tools

96

CPI2-B1 In-System Device Programmer

3.2.4.7

3.3

Memory cards window [F==E
Collapse All as

--Pr"oject @: Job: -, "<Unnamed>", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Da
é--Prnject 1: Job: -, "TXY-@1l-Atmel”, Chip: "SST S5T25VFe4@B [ISP Mode]", Data: 1
--Files loaded into buffers

é----Limit: Hone

£ Shadow areas (@ of 1000 devices programmed)

é--Shadow Area Descriptors

-#0: Sublevel: @, Addr: @x2008, Size: 4, Type: Serial MNumber
~#1: Sublevel: @, Addr: 0x2020, Size: 4, Type: CRC
~#2: Sublevel: @, Addr: @x32, Size: 8, Type: User

&-Shadow Areas Data (1000 total)

~S/N: 0OBBABYS, CRC: 0ROEA1FE, User: 0000B032: 00 00 00 00 00 00 20 VO
~S/MN: 00BBABT79, CRC: @0@OR1FE, User: 00000032: 00 00 00 Q0 00 @0 00 VO
~S/N: 00@ABYA, CRC: @Q0OOLFE, User: 00Q000032: 00 00 00 90 00 @0 9@ e
~S/MN: GOBBABYB, CRC: @0OOA1FE, User: 00000032: 00 00 00 00 00 00 00 0O
~S/N: @@BBABT7C, CRC: @Q@0R1FE, User: 00000032: 00 00 00 00 00 00 90 00
~S/N: @0@AB7D, CRC: @QOOQL1FE, User: 00000032: 00 00 00 90 00 00 0@ @0
~S/N: O@BBABTE, CRC: @0@0R1FE, User: 00000032: 00 00 00 00 00 @0 00 0O
~S/N: @@0BABY7F, CRC: @00@Q1FE, User: 00000032: 00 00 00 00 00 00 00 0O
~...992 more records

Click the Erase button in the window toolbar deletes selected project from the card. This is useful when
the card is filled up to capacity.

Windows for Scripts

ChipProg-02 provides windows for working with scripts.

(Script) Editor window

Watches window
User window
/O Stream window

These windows cannot be opened from the View menu; they can only be opened when you work with
scripts. Operations with these windows are described in the Scripts Files chapter.

Simplified User Interface

The CPI2-B1 default graphic user interface makes heaw use of menus, windows and controls that are
redundant in case of mass production. Furthermore, an unskilled operator is usually employed for such
production. Programming a lot of chips or boards of the same type with the same data is routine work
that consists of two operations: replacing target boards in a test fixture and executing a predefined batch
of programming operations (Auto Programming command). To prevent casual CPI2-B1
mismanagement and to simplify routine operations, the ChipProg-02 enables switching the CPI2-B1
graphical user interface from the default mode to the Simplified User Interface mode (SUI). In this
mode, operator can see a very simple PC screen with very limited information: a single Start button and
three virtual LEDs that indicate CPI2-B1 status: Good, Busy or Error. Or, for the Gang Programming
control mode, each site has its own Start button (see the SUI screen examples below).

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 97

4% CPL2-B1 Simplified User Interface [SUI 1] - X

Project: |STM32F437 - Debug 4

2/

Ready

@ Start

[IZ Return to editing

]

Device: STMicroelectronics STM32F437IGH [ISP SWD Mode]
Statistics: Total 0, Good: 0, Bad: 0

ERET

I [ﬂ Help

]

The screen shot abowe displays SUI set for launching a single CPI2-B1 device programmer.

o CPI2-E1 [Gang] Simplified User Interface

=2 |

Project:

T |

Device: Atmel AT8958253 [ISP Mode]

Statistics: Total: 0, Good: 0, Bad: 0

Ready

Ready

] ’E‘ Help

The screen shot abowe displays SUI set for launching two CPI2-B1 device programmers running in the
Gang Programming mode when each of two device programmers can be launched asynchronously and
independently. Each site has its own Start button. The screen shot below displays the same but when
both device programmers starts synchronically by clicking one common Start button.

© 2017 Phyton, Inc. Microsystems and Development Tools

98

CPI2-B1 In-System Device Programmer

“&@ crn-g1 [Gang] Simplified User Interface =l
Project: |ABC test -
Device: Atmel AT8958253 [ISP Mode]

Statistics: Total: 0, Good: 0, Bad: 0

Ready L |
i |
B |

Ready a
B |
B |

[ri Exit l I’E’* Help

NOTE. Two conditions should be presered for use of SUI mode. A programming session;
- should be configured by making a project:
- can be started by executing Auto Programming command, only.

A typical use scenario consists of two steps: Preparation and Use.

1. Preparation. An engineer or a technician (hereafter a supenisor) configures the programming
session using the default CPI2-B1 graphical user interface and saves the session project. Project file can
be stored at any location on PC hard drive. To launch the CPI2-B1 with the SUI, a supenisor can create
a PC desktop icon and specify the project and configuration files. After that supenisor switches the user
interface to SUI mode for use of the CPI2-B1 by a less skilled operator.

2. Use. There are two methods launching the programming when it is controlled via SUI: automatically
by an ATE signal or manually by an operator. In case the ATE (test fixture) generates the START signal
on the CPI2-B1 CONTROL connector (for example, upon closing the fixture lid and contacting test
needles the target device) this launches preset programming session. An operator then keeps replacing
target boards and close the fixture lid to continue programming boards. Alternatively launching the
programming can be initiated by either clicking the Start button in the CPI2-B1 Simplified User Interface
window or by pressing the Start button on a top of the CPI2-B1 unit.

Settings of Simplified User Interface

Operations with Simplified User Interface

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 99

3.3.1 Settings of Simplified User Interface

A session project contains information on device type, file name, serialization parameters, check sum,
list of the functions included in the Auto Programming batch and other options, including the SUI
windows and controls configurations. The SUI interface settings contain a list of pre-configured projects,
so that operator can pick a project from the list in the Use project pane unless the Allow operator to
select project from the list box is unchecked. This option can be set by a supenvsor.

To control programming sessions using SUI you first need to create a project. Start with the following
steps.

¢ Configuration menu - select target device.

¢ Configuration menu - set up a buffer.

¢ Configuration menu - set options for device serialization, writing check sum and signatures, and log file
controls.

¢ Device and Algorithm Parameters Editor window - specify the options different from default for a
chosen device.

¢ Program Manager window > Program Manager tab > Edit Auto dialog - configure Auto Programming
batch of functions.

e Program Manager window > Program Manager tab - set programming options.

Program Manager window > Statistics tab - enter the number of chips to be programmed and select

other options. When using SUI, countdown of programmed chips is disabled, and the program only

displays the numbers of successfully programmed and failed chips. Other options set in this tab

remain in force.

Once the abowe settings are done, create the project. In the menu select Project > New. In the Project
Options dialog enter project name, file name, format, and other information. Click OK button to save the
project to disk.

NOTE. It is absolutely crucial that the project is stored on disk before use. The ChipProg-02 does not
protect the SUI project files and window configurations against unauthorized modifications by an operator
or any third party.

Once the project has been created and stored on the hard drive, set SUI options. In Configuration menu
select the Simplified Mode Editor command. This will bring up Simplified User Interface Setup
window docked to the SUI window at its left. The picture below displays the Setup pane only. Any
changes made in the Simplified User Interface Setup window immediately become \isible in the SUI
window. Clicking the OK button in the Simplified User Interface Setup window completes the SUI
setup; the setup window is closed and Return to Editing button appears in the SUI window. This allows
quick switching back and forth between SUI session setup and actual device programming.

The Simplified User Interface Setup dialog has two tabs described below.

The General Settings Tab

© 2017 Phyton, Inc. Microsystems and Development Tools

100

CPI12-B1 In-System Device Programmer

" =
Simpiified User Interface se_ 2 o]

General Settings | Appearance

Current configuration: [SUI 1

~)

[Save | | saveas. |

Autosave configurati
Projects
|Jse project:

on on QK button

i@ DA TemptUPP projectstSTM32F437 upp

(7) DATemp'UPP projectstMSD-55¢c Controller - Debug 1.upp
7y DATemp'UPP projectstMSD-55c Cortroller - Debug 2 (18 Hz)upp

"-.r‘ Add...] [x Remaove from list]

[ﬁ Open project

[] Mllow operator to select project from the list

Start Operation

(@) Explicitty by the "Start” button in dialog
Gang Mode
(@ lts own "Start’ button in dialog for each site

() Single "Start’ button in dialog for all stes

[] Allow operator to terminate operation

When the device has been automatically detected in the socket

(¢ oK

J[E Cancel][ﬂ Help]

The Current configuration field displays the name of currently active SUI configuration. SUI
configuration files with have name extension .smc and are stored in SMConfig sub-folder of ChipProg-02

working folder.

The Save button writes current configuration to a file under the name shown in the Current

configuration field; the Save as... button allow:

s saving configuration file under a different name. If the

Auto-save configuration on 'OK" button box is checked, clicking on OK button at the bottom

automatically saves current configuration before

dismissing the dialog.

The Projects pane lists all projects associated with current configuration. When Simplified User

Interface Setup window is opened for the first t
use the + Add button. Single configuration may

ime, the Projects list will be empty. To add a project
include more than one project; this allows operator to

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 101

change projects without restarting the programmer. If Allow operator to select project from the list
box is checked, the SUI window will list all projects associated with current configuration. Otherwise,
only one project selected from the Use project list will be displayed. To remowve a project from the Use
project list, highlight it and click the x Remove from list button. Removing project from the list does
not remowe it from disk. The Open project button loads selected project from disk; this will not close
editor window.

The Start Operation pane specifies a method of manual launching programming operation.

The only batch command that can be launched in SUI mode is Auto Programming. This command is
executed either by pressing the physical button on the CPI2-B1 unit or by clicking the 'Start' button in
the SUI window.

NOTE. These settings do not block or influence in any other way launching CPI12-B1 by an external
START signal generated by ATE on the CONTROL connector.

If Allow programming termination by operator box is checked, the operator will be able to interrupt
programming by clicking Exit button in the SUI window, otherwise the operator will only be able to
initiate device programming.

The Appearance Tab

Here you can choose the type, size and color of the Default Font for each element in the SUI window:
Project name, Device part number, Statistics, Device operation status, and "Start" button.
Checking boxes in Display elements list makes corresponding elements visible in the SUI window.
Clicking Move up and Move down adjusts position of selected element within the window.

© 2017 Phyton, Inc. Microsystems and Development Tools

102

CPI12-B1 In-System Device Programmer

L ™
Simpiified User Interface _ L2 |

General Settings | Appearance
Default Fort
[Choose fort... i
Tahoma (11)
’ Choose colar...]
Display elements:
il Project
I Proj - Move up
Dievice part number

Device operation status
"Start" button

Settings for "Project™

[Frame
Fonit
i@ Default
() Custom: Tahoma (11) Choose...
Fort color at left Fort color at ight
@ Default i@ Defautt

[/ oK | (% Cancel | [@ Hep |

If an element is set to be \isible in the SUI window, you can modify its appearance to differ from the
default and from other elements. Checking the Frame box causes a thin blue frame to appear around

the element. The Font, Font color at left and Font color at right radio buttons modify appearance of
an element to make it distinct from other elements in the SUI window.

When the Statistics element is highlighted, Allow operator to reset statistics box will be displayed.
Check this box to allow operator clear displayed programming statistics.

When the Device operation status element is highlighted, two additional checkboxes, Serial number
and Checksum are displayed. Checking these boxes makes serial number and check sum written into
the last programmed device be displayed below the status line.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 103

3.3.2 Operations with Simplified User Interface

To launch programming operations controlled by a configured Simplified User Interface open the
Command menu, and double click the Switch to Simplified User Interface.. line.

To launch the ChipProg-02 with the Simplified User Interface (or in the Simplified Mode) use the /
Y<configuration name> option key in Command line mode (there must be no spaces between /Y and
<configuration name>). If <configuration name> includes spaces, it must be quoted. For example, if
the configuration name is STM32F429BGT [ISP SWD Mode] - Release, the command line may look
like this:

C:\Program Files\ChipProg-02\6_00_20\UprogNT2.exe /Y"STM32F429BGT [ISP SWD Mode] -
Release" ,

When launched in the Simplified Mode, the ChipProg-02 only displays the SUI window. The main
ChipProg-02 window remains invisible unless an error occurs. If a programming operation fails, the
programmer performs actions according to error handling settings. These settings are available via
Configure > Preferences menu. If the Terminate device operation on error and do not display error
message... box in the Preferences dialog is unchecked (default setting), the ChipProg-02 issues an
error message and prompts the user to either ignore the error and resume operation or terminate it. If
this box is checked, any error will cause the programming session to come to a halt; in such case no
error message will be issued.

3.4 Command Line Interface

The ChipProg-ISP2 device programmers (both CPI2-B1 and CPI2-Gx) can be controlled from Command
Line using UProgNT2.EXE executable.

Command line has the following format:
UProgNT2.exe [option 1] [option 2] ... [Name of the project file] [option 3] [option 4]...

Elements in square brackets are optional and may follow in arbitrary order, separated by spaces. These
elements are called options, square bracket characters themselves are not part of the option. Options
specify certain CPI2-B1 functions and settings. Some options are called keys. Command line may also
optionally contain the name of a project file that will be used to control programmer operation.

Each option begins with either ‘/’ (slash) or ‘-* (hyphen) followed by an option name. The slash and hyphen
characters can be used interchangeably, for example: ‘/L’, is the same as ‘-L’. Valid names are listed in the

Command line options table.

Otion names, project names, and the application executable name are case-insensitive, so there is no
difference between the ‘/A’ and ‘/a’ options. Names containing spaces must be quoted, for example: -L"Data
file 5.hex".

Some options listed in Command line options table require additional parameters; these are shown in the
table enclosed in angle brackets (< >). Parameters specify file names, devices, text strings, serial numbers,
etc. Parameters must follow options without space. For example: "/LData file 5.HEX" (load the Data file
5.HEXinto the buffer after launching the programmer) or "/FH” (file formatis hexadecimal).

Upon executing a command line the ChipProg-02 checks whether a project loaded before the program has
been closed at the previous programming session. If it has, the program automatically reloads this old
projectunless a new project name is specified in the command line.

© 2017 Phyton, Inc. Microsystems and Development Tools

104

CPI2-B1 In-System Device Programmer

34.1

There is no difference between loading a project by executing a command line, or loading it manually by
means of the ChipProg-02 user interface menus.

Some command line examples are:

1) UProgNT2.exe -C"Atmel*AT89C51ED2 [ISP BL Mode]" -L"C:\Work\Output FHles\Bin\Serial.bin" -

FB0x2000 -A -12

Launch the ChipProg-02 application, then:

-C"Atmel"AT89C51ED2 [ISP BL Mode]" - select the Atmel ATB9C51ED?2 [ISP BL Mode] device;
-L"C:\Work\Output Files\Bin\Serial.bin" - then load the file C:\Work\Output Files\Bin\Serial.bin into the buffer

#0;

-FB0x2000 - specify the binary format for the Serial.bin file with the start address 0x2000 in the buffer;
-A - then begin the Auto Programming session using the default set of commands programmed in the Auto

Programming menu;

-12 - make the ChipProg-02 main window invisible, when the Auto Programming session completes. If an
error occurs, copy error message to clipboard and close the ChipProg-02 application.

2) UProgNT2.exe "C\Work\Programmer Projects\Nexus.upp" /Al

Launch the ChipProg-02 application, then load project file "Nexus.upp" from folder "C:\Work\Programmer
Projects" and launch the Auto Programming session from buffer #1. If programming was successful close
the ChipProg-02 application. The CPI2-B1 main window remains visible.

3) UProgNT2.exe

Launch the ChipProg-02 with no options.

Command Line Options

Option name starts with either */* (slash) or ‘-* (hyphen), followed by one of the reserved names listed
below. The slash and hyphen characters have the same effect and can be used interchangeably, for

example: ‘/C’, -C'.

-N<serial number>

If more than one CPI2-B1 programmers are connected to one computer the
-N key enables control of a certain device programmer by specifying its
serial number. This key cannot be used in combination with the key -GANG
i.e. when multiple programmers were launched in gang-programming
(gang) mode (see below).

The serial number can be found on the bottom of programmer case or by
using the Help > About... menu command. Serial numbers of all
programmers connected to a PC are also available in the "Choose
programmer" dialog. The ChipProg-02 program shows this dialog if the
command line does not have the -N option.

For example, the option -NSI2-10012 specifies that all other command line
options apply to the programmer with serial number S12-10012 only.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 105

-GANG This option launches multiple CPI2-B1 device programmers in gang-
programming (gang) mode. In this mode the ChipProg-02 software controls
multiple CPI2-B1 programmers connected to a single computer. The -
GANG key cannot be used in a combination with the -N key.

The -GANG option can be used either alone, without any specifiers, or with
one of two following: <number of sites> or #<list of serial numbers>. Each
specifier requires use of its own -GANG key. For example: -GANG4, -
GANG#SI2-10014;SI12-10022. You cannot set both of these specifiers by a
single -GANG key. Below see detail descriptions of use the -GANG option
with the <number of sites> and #<list of serial numbers> descriptors:

-GANG:<number of If the :<number of sites> parameter follows the -GANG key then after

sites> launching the ChipProg-02 application itis waiting until the program
detects a specified number of CPI2-B1 device programmers connected to a
PC or for 16 sec, whatever is longer. For example, the -GANG:2 key stops
attempts to establish communication after the first two CPI2-B1 device
programmers have been detected. The :<number of sites> parameter can

be omitted.
-GANG#<list of serial If the -GANG key is followed by '#' sign with a list of serial numbers
numbers> separated by semicolons, the application waits until the number of

connected single-site programmers matches the number of serial numbers
in the list, then automatically assigns sequence numbers according to the
serial numbers in the list.

For example, if the -GANG#SI2-10014;SI2-10022 is specified, the
application waits for establishing connections with two device
programmers with serial numbers SI2-10014 and SI2-10022; the
programmer with serial number SI2-10014 will be assigned the sequence
site number 1 and programmer with serial number SI2-10022 will be
assigned the site number 2.

-ETH This option initiates control one or more CPI2-B1 device programmers

connected to a local network (LAN) via Ethernet (USB is a default option that
does notrequire use of any keys). The -ETH option can be used either
without any specifiers or with one of two following: <number of sites> or
#<IP addresses list>. Each specifier requires use of its own -ETH key. For
example: -ETH:4, -ETH#192.168.1.{2-128}. You cannot set both of these
specifiers by a single -ETH key. Below see detail descriptions of use the -
ETH option with the <number of sites> and #<IP address list> descriptors:

-ETH:<number of sites> If no parameters follow the -ETH key the program pings IP-addresses of

LAN adapters in a range automatically detected by a computer. This
process may take up to 16 seconds. To speed up connecting all the
programmers itis recommended to specifya <number of sites>
parameter. For example, for driving a single CPI2-B1 programmer via
Ethernetinclude the -ETH:1 option in the command line. In most cases this
allows to establish communications in a few seconds.

-ETH#<IP addresses This option specifies an individual IP address or a range of multiple IP
list> addresses to be pinged by a computer while it tries connect CPI2-B1 device

© 2017 Phyton, Inc. Microsystems and Development Tools

106

CPI2-B1 In-System Device Programmer

C"<manufacturer
Ndevice>"

-ETH#192.168.1.32 - connect a device programmer with the 192.168.1.32
static IP address.

-ETH#192.168.1.32;192.168.1.38 - connect device programmers with either
the 192.168.1.32 or the 192.168.1.38 IP address. After launching the program
you will be prompted to select one of two IP addresses above.

-ETH#192.168.1.{16-128} - scan IP addresses in arange 0f 192.168.1.16 to
192.168.1.128.

-ETH#192.168.1.* - scan IP addresses in a full range 0f 192.168.1.1 to
192.168.1.254.

-ETH#192.168.1.{12-33,127,164-254} - scan IP addresses in a range of
192.168.1.12 t0 192.168.1.33, then ping a single address 192.168.1.127 and
then scan a range 0f 192.168.1.164 to 192.168.1.254.

-ETH#192.168.1.* -ETH:1 - scan IP addresses in a full range of 192.168.1.1 to

192.168.1.254 and stop scanning upon connecting to the first detected device
programmer.

programmer(s). Normally, in a local network (LAN), IP addresses are
assigned by a DHCP server automatically. The DHCP server dynamically
distributes IP addresses used by CPI2-B1 programmers.

However, itis possible to specify static IP address ifitis assigned to a
particular CPI2-B1 unit or a list of IP addresses or a range of IP addresses
assigned to multiple units. See the examples below:

This option tells the ChipProg-02 program to use the device specified as
manufacturer name followed by a » character followed by device part
number specified here exactly as it presents in the CPI2-B1 device list. The
device specified in a previously loaded project will be replaced by a device
specified by the -C"<manufacturer~device>" key.

For example: -C*NXP*MC9S08DV32MLF[ISP Mode]".

Note. The use of the -C option is less beneficial than using projects.
Projects provide much more flexible and effective control of device
programming. Itis highlyrecommended, especially for mass production,
to create, configure, and save as many projects as needed and use them
with command line.

-L<file name>

This option loads the <file name> file into the CPI2-B1 buffer upon
launching the ChipProg-02 program. If other files were previously loaded
using some project, then a new one will be loaded in accordance to the file
format and start address. The loader determines file format from the file
name extension. If actual file format differs from the one listed in the file
format list use the -Foption to explicitly specify file format (see below).

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 107

-F<file format> This option sets format of the file specified by the -L<file name> option. The
<file format> must be one of the following letters:

H - standard or extended Intel HEX format
B - binary format

M - Motorola S record format

P - POF (Portable Object Format)

J - JEDEC format

G- PRG format

O - Holtek OTP format

V - Angsrem SAV format

For example, -FH option loads file in the HEX format, which contains starting
address in CPI2-B1 buffer.

If binary format (B) is specified by the -Foption, it may be followed by a
hexadecimal value for destination starting address. For example: the option
-FBFF04 loads binary file and places data starting at the address FF04h in
the buffer.

In the absence of -L<file name> the -F<file format> option is ignored.

This option initiates the Auto Programming session upon launching the
ChipProg-02 application. Upon successful completion the application
terminates. In case of error the ChipProg-02 application remains open until it
is manually closed by operator. If the [buffer number] is omitted, the data for
Auto Programming are taken from buffer #0; otherwise the data are taken
from the buffer with the number that follows -A. For example: the option -A2
specifies that data for the Auto Programming session will be taken from the
buffer number 2.

-A[buffer number]

The -A option is only meaningful if a project name or an -L<file name> option
is also specified on the same command line.

-l This key hides the ChipProg-02 main window. If an error occurs during
programming process, the window is displayed on the PC screen along
with the error message. This option is only meaningful if an -A (Auto
Programming) options is specified on the same command line; otherwise
the -1 option is be ignored.

-11 This keyis similar to the -1 key except the -I1 keeps the ChipProg-02 main
window hidden even if a programming error occurs. The first occurrence of a
programming error terminates the ChipProg-02 program and returns the
error code 1. (Successful Auto Programming session ends with return code
0.) Return codes can be used by external applications that control the CPI2-
B1 remotely, such as LabVIEW, similar programs, or batch files.

-12 This keyis similar to the -1 key; however, -12 keeps the ChipProg-02 main
window hidden at all times, suppresses error messages display, but copies
the error message to Windows clipboard.

© 2017 Phyton, Inc. Microsystems and Development Tools

108

CPI2-B1 In-System Device Programmer

3.5

-M This key starts the ChipProg-02 software in the demo mode, without use of
the CPI2-B1 hardware and without real data exchange between computer and
programmer hardware. This mode is convenient for evaluating the product
without use of CPI2-B1 hardware.

-S<file> This keyreplaces the default session configuration file UPROG.ses with a
new one named <file> (with the extension .ses). Session configuration file
stores major CPI2-B1 settings, and includes the name of the mostrecently
used project; itresides in the ChipProg-02 folder. The new session settings
will be used by the ChipProg-02 when invoked from command line.

-O<file> This keyreplaces the default option configuration file UPROG.opt with a new
one named <file> with the extension .opt. Option configuration file stores
target device type, file options, etc.; itresides in the ChipProg-02 folder. The
new options will be used by the ChipProg-02 when invoked from command
line.

-D<file> This keyreplaces the default desktop configuration file UPROG.dsk with a
new one with name <file> and extension .dsk. Desktop configuration file
stores computer screen configuration, i.e., positions, dimensions, colors and
fonts for all open windows; it resides in the ChipProg-02 folder. The new
desktop configuration will be in force when ChipProg-02 is invoked from
command line.

-ES<file> This key executes a script whose file name follows the -ES key, immediately
after starting the ChipProg-02 application. If the command line does not
include the -ES key, the ChipProg-02 application searches for the script file
named ‘Start.cmd’ in the working folder and, if such script exists, executes it.

On-the-Fly Control Interface

The On-the-Fly Control interface is very similar to command line control interface. However, it can
control a CPI2-B1 programmer that has already been started and is running, without restarting it. On-
the-Fly Control interface can be used to start any operation available for target device, such as Read,
Program, load project, execute script, etc. On-the-Fly Control utility can be used to control a running
CPI2-B1 programmer by Windows batch files coming with third-party graphical packages such as
National Instruments LabVIEW.

The On-the-Fly Control utility is an alternative to a more advanced Application Control Interface (DLL
contral); using the latter requires some programming skills.

The OFControl.exe executable resides in the ChipProg-02 installation folder. We suggest you keep it
in that folder and start it from there. Once started, the utility does not modify its working directory..

After completion, On-the-Fly Control utility issues return codes. The code is 0 (zero) in case of
success. Error codes are listed in the UPControl return codes section. The program writes error
messages to the Console window and, optionally, to log file and/or Windows clipboard.

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 109

After the On-the-Fly Control process has exited, CPI2-B1 keeps running unless On-the-Fly Control
utility had been started with the -X key. You may re-launch the On-the-Fly Control utility to control the
same device programmer. However, please keep in mind that only one On-the-Fly Control utility can
control a running device programmer at the same time. In case you launch a second instance of the On-
the-Fly Control while the CPI2-B1 device programmer is being controlled by previously launched
instance, the second instance will not "find" the programmer.

The On-the-Fly Control command line format is as follows.
OFControl.exe [Options] [@<Option File>] [Options]

Each option starts with either ‘/’ (slash) or ‘-* (hyphen) character, followed by a name. Valid names are
listed below. The ‘/’ (slash) and ‘-* (hyphen) can be used interchangeably. For example, ‘/L’, *-P".

The order of gptions in the command line is not important. Operations specified by options are
performed in logical order. For example, operations on target device will be performed after loading a
project and executing a script, regardless of the order in which options appeared on command line.
Howeer, the -F<device operation list> and -A options are exceptions. These options define an order
of operations on target device, therefore they are always performed according in the order they are
appear on the command line.

Note. Brackets [] in option descriptions denote optional parameters; brackets should not be used when
specifying actual parameters. Angle brackets <> are used to denote entities and are not part of the
option notation. For example, replace -G[+] with -G+; replace -G[+][<C:\Temp\UPC.log] with -G
+C:\Temp\UPC.log.

If a file name used in an option includes spaces, full name with the path should be used. Any additional
part of an option should not be separated by spaces. For example, -L"H:\Program Files\ChipProg-02
\6_00_20\UprogNT2.exe /g". Here the file name and path is enclosed in quotation marks (") and there
are no spaces between the /L and the rest of the option

The @<Option File> construction specifies a text file containing additional options for On-the-Fly
Control utility. Each option in such file must be listed on a separate string. For example: :

UPControl .exe -D @response.txt -WK

In the option file, lines starting with semicolon (;) are treated as comments and are ignored. A
commented example file response.txt is shown in the Option File example.

3.5.1 On-the-Fly Command Line Options

On-the-Fly Control command line has the following format:
OFControl.exe [Options] [@<Option File>] [Options]

The following table provides detailed descriptions of available options.

-D Debug mode: include additional information in console log and in log file.
This option is helpful for debugging On-the-Fly Control program.

© 2017 Phyton, Inc. Microsystems and Development Tools

110

CPI2-B1 In-System Device Programmer

-G[+][<log file name and
path>]

Send the ChipProg-02 Console window output also to a log file. If -G is
followed by a + sign output will be appended to the log file if it exists. If
the + sign is omitted a new log file is created. By default the log file is
called OFControl.log and resides in the ChipProg-02 working folder;
you can specify a new file name and location if desired.

Examples:

-G - create a new log file, named OFControl.log, in the
OFControl.exe working folder.

-G+ - append records to OFControl.log file if it exists; otherwise
create the file.

-G+C:\Temp\OFC.log - append records to C:\Temp\OFC.log file if it
exists; otherwise create it.

Keep On-the-Fly Control program running until a key is pressed on the
keyboard. This allows perusing messages in the Console window before
it terminates.

-L< ChipProg-02 executable
file name and command
line options>

Launch the CPI2-B1 device programmer if it is not running. If it has
been already launched the option is ignored. The On-the-Fly Control
program executes the -L option before all other options on command
line, that is before loading a project, executing scripts, or performing any
operations with the device. The -L cannot be used together with -R
option (see below).

Example: -L"UProgNT2.exe /gl"

-R<device programmer's
serial number>

If more than one CPI2-B1 device programmer is controlled by the PC in
the gang mode, connect to the unit whose serial number is given by this
option. -R cannot be used in a combination with -L option. If more than
one programmer is controlled by the PC and On-the-Fly Control
command line does not contain an -R option, the program terminates
with error code #14.

Copy error message to the Windows clipboard. Whenever On-the-Fly
Control program terminates with a return code other than 0 (except
when -T option is used, see below), it means that an error has occurred.
If the the -C option is given, the error message will be copied to the
clipboard; otherwise the clipboard contents remain unchanged.

If more than one operation specified on On-the-Fly Control command
line results in an error, error messages of all operations will be copied to
Windows clipboard if the command line also contains the -l option
(ignore errors).

-M[=<timeout in seconds>]

Specifies timeout in seconds when waiting for device programmer to
become ready before performing certain operations. The operations
include loading a project, running a script, programming target device,
and terminating execution triggered by the -X option. If -M option is not
specified, On-the-Fly Control program does not check whether

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 111

ChipProg-02 is ready to perform the next operation. In case it is not, an
attempt to perform a programming operation will result in program
terminating with an error.

If the -M option is not accompanied by a [=<timeout in seconds>]
parameter, On-the-Fly Control program will wait for the programmer
ready state indefinitely. In this case you can interrupt program execution
and make it quit by pressing Ctrl+C on the keyboard.

-B Stop an operation with the device. If CP12-B1 performs a programming
function (Read, Program, Verify, etc.) on target device, it will be
interrupted. This action takes place prior to performing all actions
specified by the options -P, -S, -F, -X options. It is possible, however,
that the -B option does not interrupt operation on target device. This
happens when the program displays an error dialog that requires
operator response. In this case On-the-Fly Control program exits with
an error code.

-P<project file> Load the specified project file. Project files with .UPP extensions
contain all information and settings defining a programming session
(device type, file(s) to be written to the device, customized device and
algorithm parameters, interface settings, device serialization options,
scripts, etc.).

Before loading the project file, On-the-Fly Control program waits for the
programmer to stop operations on device (see the -M option). If the -P
option is specified on On-the-Fly Control command line along with -S
and/or -F options, the project file will be loaded before running scripts or
performing any operations on target device.

Example: -P"C:\Prog\Projects\Antenna-01 Test.upp"

-S<script file> Run the specified script. Before running the script On-the-Fly Control
program waits for the programmer to stop operations on device (see the
-M option). By default On-the-Fly Control program waits for the script
to complete. To allow On-the-Fly Control program to continue
operations while the script is still running, add the -NWS option to the
option list.

Example: -S"D:\Prog Scripts\Checksum.cmd"

-NWS Do not wait for completion of the script specified by the -S option.
-F<function list> Execute listed operations (functions) on the target device. Names of the

functions in the list must be separated by semicolons (;). In order to
execute the Auto Programming function the -F option should be
followed by an asterisk character (*).

If command line has more than one -F option, functions will be executed
in the order in which they are specified on the command line.

© 2017 Phyton, Inc. Microsystems and Development Tools

112

CPI2-B1 In-System Device Programmer

If one or more -F options is specified in the command line along with -P
(load project) and/or -S (launch script) options, all functions specified by
-F option(s) will be performed after loading the project file and/or running
the script.

By default On-the-Fly Control program waits for function to complete
before proceeding. To enable the program to proceed while function
specified by the -F option is still executing, add the -NWF option to
command line. In this case you may specify only one -F option on the
command line.

If an -F option specifies a sub-function displayed in the drop-down
menus of the Program Manager function tree, use both menu name
and function name separated by the caret '*' character. For example: -
FProgram (for the Code Memory chip layer) but -FData
Memory”~Program (for the Data Memory) .

Examples:

-F* - launch the Auto Programming function.

-FErase;Blank Check;Program;Verify - erase the device, check if it is
blank, write the file from the programmer buffer and compare the buffer
and device memory contents.

"-F*;Verify;Device Parameters”"Program HSB and XAF" - execute the
Auto Programming function, then compare the buffer and device memory
contents, then launch the function Program HSB & XAF from the Device
Parameters sub-menu.

-NWF

Do not wait for completion of the function specified by -F option. This
option is incompatible with -X.

Ignore errors during programming operations. By default On-the-Fly
Control program stops operations on target device in case of any error.
The -1 option enables the operations to continue regardless of error
conditions; this allows logging of all errors that occurred.

-T[+][W=<delay in
milliseconds>]

Wait for programmer status ["Ready"” or "Busy"]. On-the-Fly Control
program returns code 0 (zero) when CPI12-B1 stops and becomes ready
to perform a programming operation ("Ready"), or 1 if an operation on
target device is underway ("Busy").

In addition, if '+' sign follows the -T and the programmer status is busy,
current function name (Read, Program, etc.) will be output to the
console window along with the completion percentage of the function
being executed. For example: Program, 87%.

Optional [W=<delay in milliseconds>] parameter sets a delay before
getting the programmer status. Delays allow checking programmer
status within a settable period of time.

Examples:

© 2017 Phyton, Inc. Microsystems and Development Tools

Control Interfaces 113

-T - get the programmer status "Ready" or "Busy"

-TW=1000 - wait for 1 sec, then get the programmer status "Ready" or
"Busy"

-T+ - get the programmer status "Ready" or "Busy" then output to the
Console window the name of currently executed function and percentagel
of its completion. An example of the function status string: Read 56%.

-V=[0] 1] Hide (-V=0) or make visible (-V=1) the ChipProg-02 main window.

If ChipProg-02 main window is hidden, the program will not be present
among other open applications in the Applications tab of the Windows
Task Manager. In order to stop a running ChipProg-02 program you
will have to go to the Process tab of the Task Manager, then locate and
highlight the programmer executable name (UprogNT2.exe) and click
the End Process button.

-X Stop the programmer and quit the program. To quit the ChipProg-02
program, the programmer must complete all current operations on the
device. The On-the-Fly Control program waits for completion of the
current programming operation for the period of time specified by -M
option. If this option is omitted or the timeout period has expired, On-
the-Fly Control returns an error.

-? or-H Show a brief description of the On-the-Fly Control program options and
exit.

3.5.2 On-the-Fly utility return codes

Upon completion On-the-Fly Control program returns code O (zero) in case of success. Otherwise it
returns one of the error codes listed below. There is one exception related to the use of option —T. If -T
option is specified On-the-Fly Control returns 0 if the programmer is stopped and 1 if an operation on
the target device is underway.

Error messages are set to the Console and, optionally, to a log file and/or Windows clipboard.

Return codes:

0 | Successful completion.

1 | The —T option was specified and the programmer is busy performing an operation on taget
device.

2 | Invalid option or parameter on command line.

3 | Error calling a Windows API function; it could be caused by an abnormal exit of the programmer
software.

© 2017 Phyton, Inc. Microsystems and Development Tools

114

CPI2-B1 In-System Device Programmer

3.5.3

response. Possibly the operator has forced closing of the program.

5 | Timeout set by an -M option occurred.

tried performing a function not applicable to multiple CPI12-B1 running in the gang mode.

the target device.

8 | Failure to load project file specified by -P option.

9 | Failure to run script specified by -S option.

10 | General error.

11 | Programming function specified by the -F option is not applicable to current target device.

12 | An error occurred while programmer performed operation on the target device.

13 | Programmer could not complete an operation and closed the program after receiving the -X
option request.

14 | More than one device programmer is running. -R option must be used.

On-the-Fly Control Examples

; Launch programmer in diagnostic mode unless itis already in use
-L"C:\Phyton\ChipProg-02\6_00 21\UProgNT2.exe /g1"

; Append records to the log
-G+

; If programmer is busy, wait for 30 seconds max
-M=30

; Load project file. The FuelPump-08.upp project file isin D:\Projects folder
-PD:\Projects\FuelPump-08.upp

; Execute csm-16.cmd script located in the D:\Scripts folder
-SD:\Scripts\csm-16.cmd

; Execute auto programming using parameters defined by the FuelPump-08.upp project
-F*

© 2017 Phyton, Inc. Microsystems and Development Tools

4 | The programmer application was closed while the On-the-Fly Control utility has been waiting for

6 | The programmer was launched in the gang mode but an option in the On-the-Fly Control utility

7 | Failure to perform requested action because programmer is busy performing anoter operation on

Operating Procedures 115

4 Operating Procedures

This chapter describes typical operations with a CPI2-B1 device programmer running in the Single-
programming control mode. The description refers to the operation made withing the ChipProg-02
GUI, only.

4.1 How to check if device is blank

1. Select the target device type: press the Select Device button in the Main toolbar or select
command Main menu > Configure > Select device.

2. Connect a CPI2-B1 programmer to the device.

3. a) Click the Check button on the main toolbar, or
b) Double click on the Blank check function line in the Function list of the Program Manager
window, or
c) Select the Blank check function line in the Function list of the Program Manager window and
click the Execute button, or
d) Select the Main menu > Commands and click on the Blank check line.

Wait for the message Checking ... OK in the Program Manager window, or for the warning
message if the device is not blank.

4.2 How to erase a device

1. Make sure the device is electrically erasable. Some devices are not erasable; these may be
programmable once or over-writable — in this case the Erase button is disabled (grayed out).

2. Ifthe device is electrically erasable:
a) Click the Erase button on the main toolbar or
b) Double click on the Erase function line in the Function list of the Program Manager window
or
c) Select the Erase function line in the Function list of the Program Manager window and click
the Execute button or
d) Select the Main menu > Commands and click on the Erase line.

Wait for the message Erasing ... OK in the Program Manager window or for the warning
message if the device is not blank after erasing.

4.3 How to read data from device

There are several ways of reading device content into the active buffer:

- click the Read button on the main toolbar, or

- double click on the Read function line in the Function list of the Program Manager window, or
- select the Read function line in the Function list of the Program Manager window and click the
Execute button, or

- select Commands > Read menu command.

© 2017 Phyton, Inc. Microsystems and Development Tools

116 CPI2-B1 In-System Device Programmer

In every case abowe, wait for the message Reading ... OK in the Program Manager window or for
the warning message if the device could not be read.

4.4 How to program a device

In order to write (program) a device you need to perform a few consecutive operations:

load the file that you want to write to the device;

edit the file (if necessary);

configure the device to be programmed (if necessary);

write the prepared information into the device and verify the programming.

441 How toload afileinto a buffer

1. In the main menu select File > Load or click the Load button on the local toolbar of the Buffer
window.

2. In the pop-up dialog box that appears enter file name, select file format, addresses, buffer and sub-
lewvel to load the file to.

3. Wait for the message File loaded: "...... " in the Program Manager window, or for a warning
message if the file cannot be loaded for some reason.

442 How to edit data before programming

1. If you need to modify source data before writing it into the target device, open the Buffer Dump
window. Please keep in mind that the View button must be released to enable editing.

2. Make necessary changes using Modify dialog or select the data to be modified and type new data
ower old data.

4.4.3 How to configure target device

1. Parameters displayed in the Device and Algorithm Parameters window that can be modified are
shown in blue.

2. Click on the name of the parameter to be changed to open a dialog. Set a new value for the parameter
or check/uncheck appropriate boxes and click OK. Modified parameter will be displayed in red.

3. Repeat the above procedure for other parameters that you wand to modify.

Note. All changes above will become effective in the target device only upon programming by the
Program Parameters function in the Program Manager window.

4.4.4 How to write information into the device
1. Click on the Options tab in Program Manager window. Check the options you need. We

recommend you always check Blank check before programming and Verify after programming to
ensure reliable programming.

© 2017 Phyton, Inc. Microsystems and Development Tools

Operating Procedures 117

2. Click on the Program Manager tab. Select the Program line in the Function box and double
click on it to start programming of the primary memory layer (Code). Click on the Execute button to
launch the process. Alternatively, you can do the same by clicking on the big Program button or by
selecting the menu command Commands > Program.

3. Wait for the message Programming ... OK in the Operation Progress box of the Program
Manager tab. If an error has occurred, ChipProg-02 issues an error message.

4. Execution of the main Program function (always shown at the top of the Function list) writes the
specified buffer layer to the Code memory of the device. However, other buffer layers may exist for
the selected device (Data, User, etc.). If more than one buffer layer exists for the selected device,
go down in the list of functions, expand those that are collapsed and execute the Program
functions for as many types of memory as device has (Data, User, etc.). Skip those steps if only
the Code layer exists in the device.

5. IMPORTANT. If any options in the Device and Algorithm Parameters Editor window have been
modified, you have to program the options set after programming all memory layers (Code, Data,
User, etc.). Go down to the Device parameters & ID line, expand it if collapsed, select the
Program function and double click on it. Continue until every parameter that has been changed in
the Device and Algorithm Parameters window is successfully programmed.

6. Some microcontrollers can be protected against unauthorized reading of the code stored in them by
setting Lock bits. You can selectively lock only certain parts of the device memory. Go down to the
Lock bits line, expand it if collapsed and double click on the lock bit# lines one by one. Continue
until every lock bit you want is set.

7. After every operation described above make sure that you see Ok [xxxxXx... Ok] message in the
Operation Progress box of the Program Manager tab. In case you get an error message stop
programming and troubleshoot the issue.

4.5 How to verify programming

There are several ways to check if device was programmed correctly:

- click the Verify button on the main toolbar, or

- double click on the Verify function line in the Function list of the Program Manager window, or
- select the Verify function line in the Function list of the Program Manager window and click
the Execute button, or

- select the Commands > Verify menu command.

Wait for the message Verifying ... OK in the Program Manager window or for a warning message
if the device verification has failed.

4.6 How to save data to disk

1. After you have read device content into the Buffer or specified Buffer layer you may want to save
the data to a PC hard drive or other media. To sawe the data:
a) Click the Save button on the local toolbar of the Buffer window, or
b) Select menu command File > Save.

© 2017 Phyton, Inc. Microsystems and Development Tools

118 CPI2-B1 In-System Device Programmer

2. In the pop-up dialog enter destination file path and name, format, start and end addresses in the
buffer, source sub-level, then click OK.

4.7 Multi-Target Programming
Multi-target device programming

CPI2-B1 programmers can be used for concurrent programming multi-PCB panel assemblies with
multiple identical boards, each of which may carry more than one programmable devices of different
types (for example, two MCUs and a configuration EEPROM). To speed up the production by parallel
flashing all programmable devices on the panel you can organize as many virtual programmer clusters
as many devices are set on each boards; each cluster should want by running multiple copies of
ChipProg-02 program. For example:

- A panel has four identical boards;
- Each board carries three devices of different types;
- Each device should be written with its own file.

Then you will need as many as 12 CPI2-B1 device programmers. A typical scenario of use:

1. Split 12 programmers in 4 groups by 3x CPI2-B1 programmers in each. Each group will
independently and concurrently program three different devices one board. In a result, all 12 devices
will be independently programmed in parallel.

2. Prepare a matrix of the CPI2-B1 programmers' serial numbers assigned to programming a particular
target board and a particular device on each board. Connect the programmers to a USB hub or a LAN
switch, connected to a PC.

3. Make tree programming projects - one for each target device. Save their .upp files that includes
device types, file names and other options. It is supposed that you have preliminary debugged these
projects on a CPI2-B1 programmer working in a single-programming mode.

4. Launch three copies of the ChipProg-02 program in the gang mode. In the command line of the
startup dialog specify serial numbers of the programmers - four numbers per a project. The program
itself will "connect" appropriate device programmers to appropriate USB or LAN ports and to
appropriate target devices and load appropriate files to appropriate buffers.

5. Then place the first panel into the fixture and start device programming either by the ATE signal or

manually by executing the Auto Programming command in the GUI. Then replace target panels upon
successful programming of all 12 devices.

5 Integration with NI LabVIEW

The National Instruments LabVIEW™ (hereafter LabVIEW) is a popular graphical development
environment that makes possible integration of a variety of design, production, and testing tools. CPI2-
B1 programmers can be controlled by LabVIEW using two methods:

e ChipProg-02 Command Line;

© 2017 Phyton, Inc. Microsystems and Development Tools

Integration with NI LabVIEW 119

e Application Control Interface (ACI).
Each method is described in a section below.

5.1 LabVIEW Integration Using Command Line

This is the most simple way to integrate ChipProg-02 with LabVIEW that involves two steps.
e Set up a programming session using ChipProg-02 user interface.
e Operate device programmer using LabVIEW user interface.

Here is an example:

1) Create a folder for controlling ChipProg-02 software from LabVIEW user interface, for example
C:\LabView\1.

2) On Windows desktop make a copy of ChipProg-02 icon. Rename it for use exclusively with
LabVIEW. The path to the program referred to by this icon is usually "C:\Program Files\ChipProg-02
\X_xx_xx\UprogNT2.exe", where the 'x_xx_xXx" is the version of ChipProg-02 software. Right-click on
the icon, select Properties, Shortcut tab, and in the Start in field change path to C:\LabView\1 as in
the following figure:

Phyton ChipProg-02 Properties e
#& Phyt pProg pe
Securty I Details | Previous Versions
General | Shartcut | Compatibility | Carbonite

@ Phyton ChipProg-02

Target type: Application
Target location: &_00_23

Target: C:\Phytan™Chip Prog-02%6_00_23%\UProgh T2 exe

Start in: "ChLabVIEWAT"

Shortout lkey: Mone

3) Power on CPI2-B1 device programmer, connect it to a USB port on your PC, and launch the
ChipProg-02 program by clicking the icon in C:\LabView\1 folder. When programmer user interface
opens, start setting programming session options by choosing the target device (for example by
pressing the F3 hot key). After choosing the device set up programming options and parameters using
ChipProg-02 windows, menus, and dialogs if these options differ from default ones. The following
options can be set within the ChipProg-02 GUI:

- Settings in the Program Manager window, such as selecting functions to be included into the Auto

Programming batch (button Edit Auto...); these include Split data, Insert test, Auto Detect, and other
settings in the Options tab; the number of chips to be programmed during a programming session and
other options in the Statistics tab.

- Settings in the Device and Algorithm Parameters Editor window that are device-specific, such as

boot vectors, fuses, lock bits, Vcc wiltage, oscillator frequencies, etc.

© 2017 Phyton, Inc. Microsystems and Development Tools

120

CPI2-B1 In-System Device Programmer

- Settings in the dialogs accessible via Serialization, Checksum, Log file... menu, such as algorithms
for writing serial numbers and custom signatures into the devices being programmed, buffer checksum
calculation, custom shadow areas, dumping data to log files, etc.

- Miscellaneous settings in the dialogs accessible via Preferences and Environment menus, such as
color, fonts, sounds, etc.

Complete the definition of programming session by including appropriate command line keys into
command line pattern:

- Specifying method of control through the programming session (key /S);
- Choosing target device (key /C<manufacturer>"<device>);
- Loading the file to be programmed and its format (key /L<file name> /F<file format>);

- Specifying the Auto Programming mode (key /A);
- Launching programmer in hidden mode, when the ChipProg-02 GUI is hidden (key /12).

Notes:

- Device specified by the /C key on command line must be the same as chosen in the ChipProg-02 user
interface.

- Specifying /12 key on command line hides ChipProg-02 application main window, suppresses display of
error messages but copies them to the Windows clipboard. If the session terminates successfully
ChipProg-02 application returns exit code 0; in case of errors exit code 1 is returned.

For example, if you want to program a HEX file myfw 1020.hex located in the Program Files (x86)
\ChipProg-02\6_00_21 folder into the flash memory of a number of NXP MK20N64VFT7 [ISP EzPort
Mode] devices, then the command line should have the following format:

"C:\Program Files (x86)\ChipProg-02\6_00_21\UprogNT2.exe" /L"Program Files (x86)\ChipProg-
02\6_00_21\myfw1020.hex" /FH /C"NXPAMK20N64VFT7 [ISP EzPort Mode]" /A /12

4) To start CPI2-B1 in command line mode use the standard LabVIEW module SystemExec.

The figure below shows a screen shot of LabVIEW GUI front panel with the cp48_01.vi module loaded.

© 2017 Phyton, Inc. Microsystems and Development Tools

Integration with NI LabVIEW 121

i3 cp48_01.vi Front Panel

Fie Edit View Project Operate Tools Window Help

== T
[[@]/@[n][17pt Appication Font |~ |[3=~ ||~][~ |26~ | - 2, [?] ‘
I Working directony
C:\LabView\l

Call Chip Prog program
"C:\Program Files (x86)\ChipProgUSB\5_21_00\UprogMT2.exe"
Firmaware path

JL"C:\Program Files (x86)\ChipProgUsB\5_21_00\myfw1020.hex" /FH
Device selecting
JC'"Texas Instruments~CC2540F256" /A /12

Result commandiine

"C:\Program Files (x86)\ChipProgUsB\5_21_00\UproghT2.exe" /L"C:\Program Files (x86)\ChipProgUSB}
5_21 00\myfw1020.hex" /FH /C"Texas Instruments™~CC2540F256" (A /12

Qs error report

ChipProg Error report
OsError ENO

I_ Wrong device identifier
@

ChipProg Exit
System output string privd std output Std error

- L
|

A i

And below is the same module block diagram:

© 2017 Phyton, Inc. Microsystems and Development Tools

122 CPI2-B1 In-System Device Programmer

I -3 cp48_01.vi Block Diagram
File Edit View Project Operate Tools Window Help

[S]=] ©[n][2][25][wa]e -+ [17pt Appication Font |~ |[5= [| [£0~ [

1 [[2]

Call Chip Prog
Tabe
B Std output
Result commandine
D"““'%D+ dabe
e+ = p— =
Firmaware path EN B Std error
— wait until completion| =
abc
Ecl]_m_

1

[Pevice selecting
fabs ChipProg Exit Code

Os error report

Working directory Y E
& 5
Clears clipboard ChipProg Error report

At App 3
Clipboard.Read-

]

At App a
Clipboard.\Write

Jab:")
[}—p Text

abe

[

=
2
[=]
S
%)

%
L

ﬁ
>

il
NS

@ |4
®

N

e

oy

(]

The <CPI2-B1 starts in hidden mode, its GUI remains invisible during the programming session. If no
errors occur, the ChipProg Exit box returns exit code 0, otherwise exit code 1 is returned. The error is

displayed in the ChipProg Error box report.

5.2 LabVIEW Integration Using ACI

The ChipProg-02 software package includes the Virtual Instruments (VI) library developed in the
National Instruments' LabVIEW ™ graphical development environment. It also includes a few usage
examples of these virtual instruments. The library files reside in the LabVIEW folder located in the
ChipProg-02 installation directory. The library is created using the 2013 SP1 version of LabVIEW.

The DLL control is based on use of the Application Control Interface. Each VI is a wrapper over the
appropriate function exported by the ACI.DLL library. You should be quite familiar with the Application
Control Interface in order to use the Virtual Instruments library.

Because of limitations imposed by LabVIEW on passing parameters to functions exported from DLLs,
the virtual instruments do not call the ACI.DLL functions directly. Instead, they call functions exported

© 2017 Phyton, Inc. Microsystems and Development Tools

Integration with NI LabVIEW 123

from the intermediate DLL - the ACI_LV.DLL. This DLL packs parameters into structures required by
ACI.DLL and then calls its functions. The declarations of functions exported by ACI_LV.DLL are placed
in the C/C++ header file named ACIProgLabVIEW.h.

Each virtual instrument has its own front panel. It allows calling an appropriate Application Control
Interface function. In order to do this, before launching this function, you should launch the CPI2-B1 by
means of the VI with the name ACI Launch. Each virtual instrument has input and output terminals for
inputting and outputting parameters of the ACI function senved by the virtual instrument.

The VI folder contains a sub-folder called Examples with two usage examples for virtual instruments. The
"Device Programming Example" demonstrates use of all major ACI functions, namely:

¢ launch a device programmer;

¢ |oad a project;

e display the device programmer buffer content in the GUI;

e display a chosen device in the GUI;

e display the device programmer socket's status (if a chosen programmer type supports this feature);
e write a serial number and increment it automatically in the device programmer buffer;

e perform programming functions on target device and display the results in the GUI,

e count numbers of successfully programmed and failed devices, and display them in the GUI;

To evaluate the example, start the CPI2-B1 and launch Device Programming Example by clicking
Run continuously button in the LabVIEW GUI. Then click the Launch Programmer button on the VI
front panel. This will open front panel of the virtual instrument ACI Launch. Enter full path to the
ChipProg-02 executable file, for example: "C:\Program Files\ChipProgUSB\6_00_00\UprogNT2.exe" and
(optionally) specify the command line parameters. To awoid prompts to restart programmer you can
specify the path to the UprogNT2.exe in a constant string in the virtual instrument diagram and un-check
the Prompt for programmer name, switches, etc... box on the front panel (see the diagram below).

¥ ACI_LV.Iviib:Device Programming Example.vi Block Diagram

DT
Error Message Function Failed % Compiet
B e e & Complete
ER = Device Status
BET] . ‘ R
{[1] "Launc®Programmer"- Value Change ~pf—————— ; Executing Slide
Source) [5oecify the correct file name for the programmer [0 B
Type file, its line switches and other (2000 M Text TedColor]
Time of ACI_Launch if you do not want to display the - New Device r
CiRef | |prompt.
aE Oldvel Prompt for programmer name, switches, etc | 5
NewVal : . error out 2 : B
N —1:_2 eSS} WTrue P
C\Program Files\ChipProgUSBI5_25_00\UpragNT2 exe * e
Function Name fir-
FR [Wo1| error out Fibc]
e = {Ee]]
B e 4 TFalse ~P]
Device detected, pin contacts are ok
Rl Sl
N device i th sockel >
Embed at Address: Device detected, inserted with shift] WTrue -H
iz Bad pin contaci(s - #Serial Number: >
Device Selected: f
HFalse -} Unknown (Auto Detect is probably off, +#Saral Namber]
} @m ﬁ e Aum—\ntrementSena\ Number
Programmer Connedted Launch Prog LA
[w—5
e :
- Embed at Address: [=oo
[—71] 5
T
(True ~P]
Launch Programmer Load Project Program Clear Al =2ed senial number
Auto-Increment Serial Number
G 3 7
o
L4 | jJ

After launching the programmer its current status becomes visible in the virtual instrument's front panel.

© 2017 Phyton, Inc. Microsystems and Development Tools

124 CPI2-B1 In-System Device Programmer

Clicking the Start button launches the operation with the name that you can enter into the Function
Name field, for example: Blank Check. If the Function Name field is left blank, the programmer will
execute Auto Programming function. This process is illustrated in figures below.

B! ACI LV Ivlib-ACI Launch vi

File Edit View Project Operate Tools Window Help ALY

"Eb ’—|—|@ n Latunh

ProgrammerExe
% C:\Program Files\ChipProglUSB\6_26_00\UprogNT2.exe ﬁ'l

CommandLine

g

v Programmer window visible (Debug)

Launch Programmer

Programmer Name Number of Sites
0
error out [%
status code source
ri 0 -
-1

¥/ ACI_LV Wiib-Device Programming Example vi

File Edit View Project Operate Tools Window Help "
Balom .
. Address Buffer Dump J
W Prompt for programmer name, switches, etc... Project File Name: ’): o0 00 |oo |oo |oo
= |3
i A 00 00 |00 |00
Launch Programmer
e 2w [0 o
4 Programmer Connected
0o 00 (0O |00
Devics Selected: | SST SST8IVEB4RD &l Bzl sam Mz
BeTit Embed at Address:
Device Status Unknown (Auto Detect is probably off) wam New Device - IU‘X55FE
ad: |1
Serial Number:
Function Name Program .l Executing Total: 3 ;:HOK.OOUOOGEIE
_ 75 % Complete Clear All W Auto-Increment Serial Number
| |
error out
o - 3 T — status code
—=
rror Message unction Fai il HU— | |
source
—1
=)
L ;H

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 125

6.1

6.2

Standalone Operation Mode

CPI2-B1 device programmers can operate in standalone mode that does not require control by a
computer. This control mode provides the fastest CPI2-B1 control. It is especially convenient for mass
production without human intervention.

Overview

CPI2-B1 device programmer contains internal memory card (or SD card) that can hold all information
sufficient for maintaining programming sessions without further interaction with a PC. This CPI2-B1 mode
of operation is called standalone mode. (The capacity of internal memory card is 8 to 64 GB; it can be
upgraded by Phyton without prior notice.)

To configure standalone mode, CPI2-B1 operator puts the following information into the internal memory
card:

¢ unique serial number of the device programmer;

¢ data to be programmed into target device;

e settings and programming options;

¢ pre-generated parameters for device serialization (optional).

The abowe information, called Standalone Project, completely defines a programming session executed
by CPI2-B1 programmer in standalone mode. A standalone project is quite similar to projects used for
other methods of controlling ChipProg-ISP2 programmers. A standalone project may include multiple
Standalone Jobs. CPI2-B1 memory card can store up to 255 independent jobs, provided the total volume
of data to be programmed is does not exceed memory card capacity.

Operator prepares standalone jobs within the ChipProg-02 GUI. Further description assumes that
standalone jobs were prepared in accordance with guidelines described below.

Switching to and from Standalone Mode

After power-up CPI2-B1 device programmer enters idle mode. It can then be switched into either
standalone or computer controlled mode. Switching a CPI2-B1 programmer into the standalone mode
can be done in one of the following ways:

e Using ChipProg-02 GUI, by selecting menu command Commands -> Standalone Mode (see figure
below).

© 2017 Phyton, Inc. Microsystems and Development Tools

126

CPI2-B1 In-System Device Programmer

&P Switch to Stand-Alone Mode @

Programmer(s) will be switched to Stand-Alone mode and Stand-Alone mode
monitor will be launched. The programmer shell will exit

Active Stand-Alone job number

Selected by Control. Job_Sel[x 0] pins

@ Defined programmatically: |J0b: #1, Project TxY-01-Atmel o |

i Cancel | |i‘? Help |

By launching a Standalone Mode Monitor program,

By applying a logical 1 signal to the SAMODE pin of CONTROL connector at a moment of the
programmer powering.

By applying a logical O signal to the Start pin of CONTROL connector for at least 2 seconds.
By pressing and holding Start button for at least 2 seconds.

Once CPI2-B1 switches to standalone mode, the green (GOOD) and red (ERROR) LEDs start blinking.
These LEDs will keep blinking until the programmer is switched to computer controlled mode. When
programmer is in standalone mode, a standalone job can be launched by either applying logical O to the
Start pint of CONTROL connector for at least 1 ms, or by pressing Start button on the programmer.

ChipProg-02 software allows real-time monitoring of CPI2-B1 device programmer activity (or multiple
programmers running in the gang mode). Special utility, Standalone Mode Monitor, is provided for such
monitoring . Monitor displays status of device programmer (if multiple CPI2-B1 device programmers if
running in gang mode, statuses of multiple programmers) along with current Standalone Job number,
device counters, statistics of failures, and other useful information.

To interact with ATE or other equipment, CPI2-B1 device programmer running in the standalone mode
provides logical signals Good, Busy, Error (log. 0 means active) on corresponding pins of the CONTROL
connector. These signals are duplicated by Green, Yellow and Red LEDs on the top surface of CPI2-B1
unit.

If a session inwolves programming of different data into two or more devices of different types, by means
of the same CPI2-B1 programmer, standalone jobs must be switched by external ATE or other
equipment. For this purpose, the CONTROL connector contains six pins (Job_Sel [5..0]) used to select
a standalone job. For example, if Job_Sel code = 000001B the programmer will run the Job #1, if the the
code = 100001B -- Job #33 (or 21H). When no electrical signals are applied to these pins, Job #0 will be
selected.

When multiple CPI2-B1 device programmers run in gang mode, ChipProg-02 program takes care of
synchronizing Standalone Mode Jobs in all device programmers in the gang cluster.

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 127

6.3 Preparing Standalone Mode Projects

Use CPI2-B1 device programmers in the Standalone Mode requires using Standalone Mode Projects.
These projects store the file names and paths, device part numbers, programming options, serialization
parameters, etc. Operator prepares standalone mode jobs using the ChipProg-02 Graphical User
Interface (GUI).

To create a standalone project, first a regular project must be created by using menu command Project
> New.

6.3.1 Data Caching

Data Caching is a process of copying data to CPI2-B1 device programmer internal memory card by the

ChipProg-02 program. After caching has been performed,

¢ the programmer uses data from internal memory card rather than from a computer. Copying data from
memory card to the target device is significantly faster than copying it from a PC;

e if a project is open within the ChipProg-02 application, data caching automatically copies to memory
card all information necessary to run this project in the standalone mode.

Data Caching function is off by default. To increase programming speed, caching data on memory card
is only useful with target devices that have large capacity.

Data Cashing status is displayed in the ChipProg-02 main window toolbar:

W A | Check Program Verify Read Erase Auto || B Awaiting AutoProg

-]

Data caching states are:

Either programmer type used is not CPI2-B1, or SD card is not present or is
malfunctioning. Data caching is not possible.

B caching is off Data caching is turned off.

Data caching ready. To perform caching, start Auto Programming of the
target device.

Data caching complete. subsequent programming operations will use data
B Cached on SD card. If a project is open, it is ready to be prepared for standalone
mode.

Data caching complete. Project is ready for standalone mode and is
assigned to standalone job with selected number.

a Awaiting AutoProg

B cached, Job: #2

To bring up settings for caching, standalone jobs, and serialization, click on the image of caching status,
or use the command Configuration -> Data Caching, Standalone Jobs... .

© 2017 Phyton, Inc. Microsystems and Development Tools

128 CPI2-B1 In-System Device Programmer

How Caching is Performed

Before launching, data caching must be enabled in settings. Caching happens during the first automatic
programming of a target device. The ChipProg-02 program records all buffer layers read operations
performed by programmer.

After automatic programming has finished, SD card will contain cached data which will be used for
subsequent programming operations. SD card can hold up to 255 projects, provided the size of all buffer
layers does not exceed SD card capacity.

Projects stored on SD card are assigned numbers. The program uses the following rules to determine
the number assigned to a project when storing it on SD card.

e [fthere is a project open in ChipProg-02, then a project on SD card with the same name is looked up;
if such project exists, it is overwritten. If there is no project with this name on the card, the first unused
number is assigned. If there are no unused numbers, the project is assigned the first lowest number
used by an unnamed project. If there are no unnamed projects, an error is reported.

e [f there is no open project in ChipProg-02, then the cached data are considered to be an "unnamed
project.” (project 0 in the figure). First, the program checks if an unnamed project with these data
already exists on SD card, and if yes, the procedure stops. Otherwise, the unnamed project is stored
on SD card and is assigned the first available number. If no numbers are available, the data are written
into the oldest unnamed project and its number is reused. If there are no such projects on the card, an
error is reported.

SD Card Window can be used to examine information stored on the card, as shown on the figure below.

Memory cards window E=E=E
Collapse All | Expand | Erase

B..

--Pr"oject @: Job: -, "<Unnamed>", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Data: 16.9 MB (0.21%)
LiJ--P_rnject 1: Job: 1, "Caching3", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Data: 16.@ MB (@.21%)
E--F_iles loaded into buffers
L"C:\Ray\UProghT2\@xFF.bin", Buffer: @, Sub-Level: @
é----Limit: Mone
E--Shadow areas (@ of 10000 devices programmed)

= Shadow Area Descriptors
- #0: SublLevel: @, Addr: Bx108, Size: 4, Type: Serial Number
! #1: SublLevel: @, Addr: Ox1A, Size: 4, Type: CRC
f@-Shadow Areas Data (10000 total)
F-Project 2: Job: 2, "Left Wing Controller”, Chip: "Atmel AT8958253 [ISP Mode]™, Data: 1.0 MB (0.017%
F-Project 3: Job: -, "RTX-12 (2016-11-21)", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Data: 16.@ M
#-Project 4: Job: -, "NavigationModule®®8", Chip: "Altera EPCSASISN [ISP Mode]", Data: 1.8 MB (8.017%

During subsequent programming operations, the programmer uses buffer layers data from SD card.
ChipProg-02 application tracks changes in the settings that can cause modification of data on the card,
and if need launches data caching again. Actions that will trigger re-caching are:

¢ writing data into buffer memory by reading in a file, manually using dump window, by a script or using
ACI;

e change in target settings;

¢ change in serialization settings;

e change in parameters of automatic programming etc.

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 129

6.3.2 Projects and Jobs

Because of data caching, internal SD card in the programmer will store a set of projects that can be
used in standalone mode. ChipProg-02 application automatically assigns a number to each stored
project.

When using programmer in standalone mode, logic signals on Job_Sel [5..0] pins of the CPI2-B1
CONTROL connector are used to select a standalone job. The number of such job is uniquely defined by
these signals. Each job is simply a reference to a project number. Assignment of specific projects to job
numbers is performed using the standalone mode settings dialog, as shown in the figure.

Stand-Alone Mode and Data Caching Settings @

Settings | Stand-Alone Jobs |Seria|iza‘rjon|

Active Stand-Alone job number

(@) Selected by Control.Job_Sel[x..0] pins

(7)) Defined programmatically: | Job #0 v

Stand-Alone Job Assignment:

Job #0:| RTX-12 (2016-11-21) (Macronix MX25L12873FM21 [ISP Mode]) ": i
Job #1:| Left Wing Controller (Atmel AT8958253 [ISF Mode]) ": E|
Job #2:| NavigationModuleD08 (Altera EPCS4SIEN [ISP Mode]) ":_
Job #3:| <Mot assigned:= -

Job #4: .
TXXY-01-Atmel (SST SST25VF40B [ISP Mode])

Job #5: | Left Wing Controller (Atmel AT3338253 [ISP Mode])
-|RTX-12 (2016-11-21) (Macronix MX25L12873FM2I [ISP Mode])
Job #6: | NavigationModule008 (Altera EPCS4SIEN [ISP Mode])

Job #7:| <Mot assigned:= ':

Jnk #3- | Mt ascinnads v.

Only a named project can be associated with with an autonomous job. Each project can only be
associated with a single job. The list of projects available for association contains projects stored on
programmer internal SD card.

When using programmer in standalone mode, a job can be selected by using logic signals on Job_Sel
[5..0] pins of the CPI2-B1 CONTROL connector or using Standalone Mode Monitor. A job can also be
selected when using ChipProg-02 application to switch programmer to standalone mode.

6.3.3 Device serialization

Standalone mode allows writing into target device generated serial numbers, checksums, and other
information. When using computer-controlled mode (GUI), serial numbers and other parameters of
serialization can be managed using serialization settings brought up by menu command
"Configuration" -> "Serialization, Checksum, Log." Each project has its own serialization settings.
These settings must be done before generating serialization information for standalone mode. See figure
below.

© 2017 Phyton, Inc. Microsystems and Development Tools

130

CPI2-B1 In-System Device Programmer

Serialization, Checksum, Log File @
| General| Serial Number |Chec|-<sum | Signature String | Custom Shadow Areas | Log File|

[V]write S/N to E%dress: 0x2008 - in layer: [Code v]

Current serial number: (0x87 B?rte Order D-lsplay SN as:
(@ LSE first () Decimal
SN size, in bytes:] _
/N size. inbytes: |4 Y] @ MsBfist @ Hex
(@) Increment serial number by: 1 -
-.,:,.-Use scriptto increment serial number: v Browse...

Serialization information for a project must be generated beforehand. Settings that control generation can
be done in a dialog brought up by clicking on the image of serialization status, or by menu command
"Configuration" -> "Data Caching, Standalone Jobs..." as shown of the figure below.

Stand-Alone Mode and Data Caching Settings @

| Settings | Stand-Alone Jobs | Serialization |

For stand-alone programmer operation you can generate serialization information (serial numbers,
checksums, etc. in advance. When generated, information will me written to the programmer's memory card.
See help for details.

Project TXY-01-Atmel

Generate serialization information for EEE ¥ device samples, max. 182731

If programmer(s) contain still unused records:

(@) Discard them and replace with new ones

Add new records to existing ones

Start generation

Serialization information is stored in a fixed portion of SD card memory. The maximum number of target
devices that can be accommodated depends on what information is generated. In the figure the
maximum number of devices is 182781.

When operating in standalone mode, programmer fetches serialization records one by one, and
programs them into target devices. The number of the next record to be fetched is presened even if the
programmer is powered off. Once all records have been programmed, the programming process is
terminated and an error occurs. To continue programming process, additional serialization info must be
generated.

If unused records remain in the programmer, a dialog can be used to choose how they should be dealt
with. If new records are added to existing ones, serial numbers of target device will be consecutive.

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 131

Serialization records can only be generated after the data has been cached. This is because before
caching the amount of SD card memory available for storing serialization information cannot be known.

To perform generation, the button "Start Generation" must be
clicked. The OK button at the bottom of the dialog does not start
generation.

In the gang mode, serialization records are equally distributed among all CPI2-B1 device programmers
in the gang cluster since it is assumed that all these programmers are simultaneously writing target
devices.

Current serialization information can be viewed in the Memory Maps window; in this window serialization
records are called "shadow areas" (which they actually are), as illustrated in the following figure.

Memory cards window [l=l=lEs
Collapse All | Expand | Erase

--Pr"oject @: Job: -, "<Unnamed>", Chip: "Macronix MX25L12873FM2I [ISP Mode]", Da
=-Project 1: Job: -, "TXY-@1-Atmel”, Chip: "SST SST25VF@4@B [ISP Mode]", Data: 1
--Files loaded into buffers
é----Limit: Mone
Eshadow areas (@ of 1090 devices programmed)

E| Shadow Area Descriptors

-#0: Sublevel: @, Addr: 0x2088, Size: 4, Type: Serial MNumber
~#1: Sublevel: @, Addr: 0x2020, Size: 4, Type: CRC
~#2: Sublevel: @, Addr: @x32, Size: 8, Type: User

E| Shadow Areas Data (1000 total)

~S/N: 0OBBABYS, CRC: 0ROEA1FE, User: 0000B032: 00 00 00 00 00 00 20 VO
~S/MN: 00BBABT79, CRC: @0@OR1FE, User: 00000032: 00 00 00 Q0 00 @0 00 VO
~S/N: 00@ABYA, CRC: @Q0OOLFE, User: 00Q000032: 00 00 00 90 00 @0 9@ e
~S/MN: GOBBABYB, CRC: @0OOA1FE, User: 00000032: 00 00 00 00 00 00 00 0O
~S/N: @@BBABT7C, CRC: @Q@0R1FE, User: 00000032: 00 00 00 00 00 00 90 00
~S/N: @0@AB7D, CRC: @QOOQL1FE, User: 00000032: 00 00 00 90 00 00 0@ @0
~S/N: O@BBABTE, CRC: @0@0R1FE, User: 00000032: 00 00 00 00 00 @0 00 0O
~S/N: @@0BABY7F, CRC: @00@Q1FE, User: 00000032: 00 00 00 00 00 00 00 0O

..992 more records

Limitations of Serialization in Standalone Mode

Besides obvious limitations related to the need of periodically add in serialization records, the following
should be kept in mind:

e |f programming of a target device ended up in an error, serialization record is still used up, in spite of
settings in the application program. In such case serial numbers of targets will not be consecutive - it
will consist a gap.

e [f scripts are used for generation of serial numbers, checksums, etc. it is important to realize that in
the GUI control mode scripts launch immediately before programming of the next target device.
However, when generating records for standalone mode, scripts launch immediately after generation of
the next record. If a script includes some real-time related parameters, such script will not work
correctly. If the scripts modify the data to be written into target device, that is not going to work either.

© 2017 Phyton, Inc. Microsystems and Development Tools

132 CPI2-B1 In-System Device Programmer

6.3.4 Permissions and setting limits
A limit can be set on the number of target devices to be programmed in standalone mode. This may be
useful to physically control the quantity of devices.

The limit is specified in project settings by clicking on "Permissions” button in the dialog, as shown in
the figure.

=N Hol ™

Project Options

Project File Name

Fmp\TXY-01-Atmel.upp + |@Bowse. | [[% Pemissions. |

Project Description (optional) Desktop
(@) Project has its gwn desktop

(") One desktop for all projects

Files to Load into Buffers
File Format Buffer Layer StartAddr Offset

C\Ray\UProgNT2\(xFF bin | _Binary image|_Buffer#0] Codel 0|0

a4 Add file.. l l x Remove file l l [Editfile options... l
Scriptto execute before loading files: -
Scriptto execute after loading files: - 'y Browse..
[] Automatically reload files ifthey are modified by an external application
l « OK l l & Cancel l l © Help I

The button brings up permissions dialog in which you can specify the number of devices to be
programmed. (The option of protecting the project with a password must be turned on.)

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 133

fﬁ Project Permission Settings @

[V|Protect the project with password:; 123 .

Choose items to disable when the projectis protected:

Changing the buffers memary, including file loading

Changing device and algorithm parameters

Changing the programming addresses, auto functions list and statistic settings
Changing the programming addresses, auto functions list and statistic settings
Changing interface settings

[¥] Access to scriptfiles

[¥] Project closing

Limitations for Stand-Alone mode

[¥] Allow programming of not more than 500 * device samples

Disabling of the project editing protects it against incidental changes of important
seftings and data. However, it does not protect the project settings intentional changes
by experienced users.

« 0K | |ﬂ Cancel ‘ |E-" Help

Current state of limitations counter can be monitored in the Memory Map window.

Memory cards window [l=l=lEs
Collapse AII| Expand| Erase |
=-S/N: $I2-10003, Card: 7.42 GB
--PPoject @: Job: B, "RTX-828", Chip: "Atmel AT89LS51 [ISP Mode]", Data: 1.0 MB
= Project 1: Job: 1, "TXY-@1l-Atmel", Chip: "SST SST25VF@48B [ISP Mode]", Data: 1
--Files loaded into buffers
§-|-Limit: 497 of 508 devices remaining |
il Shadow areas (3 of 1000 devices programmed)

Once the limit was achieved ChipProg-02 issues an error warning and the programming stops. To
continue programming, it is required to confirm or remowe limitation using Project Permission Settings
dialog.

6.4 Standalone Mode Monitor

Standalone Mode Monitor is an application program for watching the states of programmers operating
in standalone mode. The application also can perform certain operations with programmers.

© 2017 Phyton, Inc. Microsystems and Development Tools

134 CPI2-B1 In-System Device Programmer

The application can be launched in the following two ways:

e by clicking on its icon in the launcher application as shown on the figure below:

'@ ChipProg-02 v. 6.07.00 o] & s

Programmer Startup Options

|#| Create a shortcut with these options

@ Start ChipProg-02 &7 Open shortcuts folder

Gang Mode Diagnostic Mode

Connection: (@) IJSB Ethernet
Additional Command Line Parameters:

| Qﬁ Start Stand-Alone Mode Monitor Demonstration Mode (without hardware)

| Close this window after programmer start

¢ by using ChipProg-02 GUI application menu command "Commands" -> "Switch to standalone
mode."

When launched, Standalone Mode Monitor switches all programmers it can communicate with to
standalone mode, unless they are in that mode already. The Monitor can "see" only those programmers
which are not being used at the moment by ChipProg-02 application; this is because at any given time a
programmer can only be used with one controlling application. On the other hand, ChipProg-02
application does not "see" programmers operating in standalone mode.

Standalone Mode Monitor does not affect operation of the programmers, it only displays their current
state, as shown below.

& Stand-Alone Programmer Mode Monitor E@
SN Job Project Good Bad Limt Function Progress % EDs Device 5/N Error Device
vl #1 S512-10002 1 Left Wing Controller 2 0 None Stopped OHNE o Atmel AT8958253 [ISP M
#2 S12-10003 1 TXY-01-Atmel 4 0 493 Program [| 49% M CJH A798 SST SST25VF040B [ISP I
#3 SI2-10004 1 * RTX-12 (2016-11-21) 5 5 488 Progam B 1 5% HCIHE A792 erSD_Emptylob:1,erDeviceBad:5 Macronix MX25L12873FM2

* Project on memory card must be updated

i’ Select active job: |1 v‘

|§’n¥ Start programming ‘ ‘ Switch to Online mode ‘

Terminate programming e} Show errors ® Exit

Information is displayed as follows.

Programmer number in the list.

S/N Programmer serial number.

Job Number of the active standalone job.

Project Name of the project whose data is being written to target device.

Good Counter of successfully programmed targets. This counter is reset to zero when

programmer is powered off or when a different job is selected.

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 135

Bad Counter of targets programmed unsuccessfully.

Limit Number of targets remaining before the limit count is achieved. The count is set in
project settings. Limit counters are preserved in powered off stat of programmer.

Function Name of programming function being performed currently.

Progress Indicator of function execution process.

% Percent completeness of the function.

LEDs State of programmer LEDs.

Device S/N Current target device serial number, if it is defined in the standalone mode
serialization settings.

Error Error codes with error counts. Programmer keeps up up to 8 types of errors.

Device Target device selected for the project. This information is shown last as least priority.

The Monitor window size can be changed in the same way as sizes of other windows.
All buttons in the dialog affect programmers marked by checkboxes.

Select Active Job: For selected programmers, set active job number to the number selected in the list
to the right of the button. Selecting a job number by itself does not activate the job; clicking the button
activates it. If selected job is not associated with any project, attempt to start programming aborts with
an error erSD_EmptyJob. The button is enabled only if all selected programmers are stopped.

Start Programming: Start target device programming on selected programmers that are currently in the
stopped state.

Interrupt Programming: Abort all target device operations on currently selected programmers.
Completing of this command can be delayed for a while.

Switch to Online Mode: Switch selected programmers into online (computer-controlled or GUI) mode.
This may be used to allow programmers to be controlled by ChipProg-02 application (the application
does not "see" programmers operating in stand-alone mode). Once programmers are switched into
online mode, Monitor is no longer able to communicate with them. For the Monitor to re-establish
communications it has to be restarted.

Show Errors: Show table of errors for all selected programmers. Error counters are reset to zero when
programmer is powered off. When switching active job, error counters are not reset.

If a project name is displayed in red, it means that the project data was written by an earlier version of
application and have to be refreshed. In many cases this is critical, because with new versions of
programmer software its firmware is also updated. To refresh a project launch the ChipProg-02
application, load the project into it, make sure data caching is turned on, and run Auto Programming
once. This will refresh the project in programmer SD card.

6.5 Example of Setting Up Standalone Mode

Let's take a look at the minimal set of actions needed to prepare programmer for standalone mode
operation.

© 2017 Phyton, Inc. Microsystems and Development Tools

136

CPI2-B1 In-System Device Programmer

e Target device: Atmel AT89LS51 [ISP Mode].
¢ File C:\Work\Monitors\RTX-028.hex (in standard hex format) has to be loaded into memory buffer.
e A 32-bit serial number has to be written into each target device at address 0x200. Serial numbers are

increased by 1 for each device.

Connect programmer to a computer and start application ﬁ Phyton ChipProg-02

using icon:
Click on "Select device" button: % Select Device...
Select device type Atmel AT89LS51 [ISP Mode]:
&R Select Device = @
Devices to list Devices

[¥] EPROM. EEPROM. FLASH
[¥]PLD, PAL, EPLD
Microcontrollers

Programmable In-Socket

Programmable In-System

'.:_.' Selected manufacturer anly

(@) All manufacturers

.

Search mask:
ATEILS -

Atmel AT89LS51 [ISP Mode

Atmel ATEILS52 [ISP Mode]
Atmel AT8ILSE3 [ISP Mode]
Atmel ATEILS8252 [ISP Mode]
Atmel ATEILSB253 [ISP Mode]

Execute menu command Project -> Create New:

Project Options

Project File Name

=N Hol ™

C\Work\Projects\R TX—D?_B|

Project Description (optional)

This brings up project creation dialog.

- ') Browse...] l & Permissions...]

Desktop

'.é.' Project has its own desktop

(") One desktop for all projects

In the field "Project file name" enter the name of the project file.

Alternatively, click on Browse button and select folder and file using standard Windows dialog:

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 137

@ Project Options = @

Project File Name

C:\Work\Projects\RTX-DZﬂ -) Browse..] l e Permissions...]
Project Description (optional) Desktop
- (@) Project has its own desktop
() One desktop for all projects
Files to Load into Buffers
File Format Buffer Layer StartAddr Offset
o Addfile... l l b 4 Remove file l l [1 Editfile options... l

Ay
Add a Tile To the Tist. The "Load File" dialog will be displayed. l

Scriptto execute before loading files: -
Script to execute after loading files: -

[] Automatically reload files ifthey are modified by an external application

< oK] [32 Cancel] [ﬁ Help]

Select file C:\Work\Monitors\RTX-028.hex to be loaded:

© 2017 Phyton, Inc. Microsystems and Development Tools

138

CPI2-B1 In-System Device Programmer

Fil

R Load File

& Name:

CAWorkiMonito rs‘;RTX-DZS.hE)d

Fil

e Format:

Buffer to load file to:

(@) Standard/Extended Intel HEX (* hex:* mcs)

(") Binary image (* bin)
(")Motorola S-recard (* hex* s** mot)
) POF (*.pof)

() JEDEC (" jed)

(C)PRG (* prg)

[JHoltek OTP (*.otp)

(") Angstrem SAV (*.sav)

(T ASCI Hex (" &)

(CIASCI Octal (7 bef)

Start address for binary image: |0

Offset for loading addresses:)

(@ Buffer #0

Layerto load file to:

@ Code (128 KB). bytes

OK l [ﬁ Cancel l [G Help

In file selection dialog enter C:\Work\Monitors\RTX-028.hex, or use Browse button. Select "Standard/
Extended Intel HEX":

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 139

@R Load File @

File MName:

C:\Work\Monitors\RTX-DZB.hE)d -
File Format: Buffer to load file to:

(@) Standard/Extended Intel HEX (* hex:* mcs) (@ Buffer #0

[__)Binary image (*.bin)

(")Motorola S-recard (* hex* s** mot)
(C)POF (*pof

(") JEDEC [*jed)

(C)PRG (* prg)

(T)Holtek OTP (*.otp)

() Angstrem SAV (*.sav)

(T)ASCI Hex (".td)

(CIASCI Octal (=)

Layerto load file to:

@ Code (128 KB). bytes

Start address for binary image: |0 -

Offset for loading addresses:) -

« OK l [3’. Cancel l [(-".' Help

Confirm file selection by clicking OK, and the settings dialog will show the name of selected file. Confirm
project settings by clicking OK; the project will be saved in the selected file C:\Work\Projects\RTX-
028.upp. If folder :\Work\Projects does not exist, the program will ask if it should be created.

© 2017 Phyton, Inc. Microsystems and Development Tools

140

CPI12-B1 In-System Device Programmer

Project File Name

C\Work\Projects\RTX-028 -) Browse...] l & Permissions...]

Project Description (optional) Desktop
@ Project has its own desktop
() One desktop for all projects

Files to Load into Buffers

|Fi|e Format Buffer Layer StartAddr Offset

C:\Work\Monitors\RTX-028.hex| Standard/Extended Intel HEX| Buffer#0] Code| [0 |

= Add file.. i [8 Remove file] [@ Editfile options...]

Script to execute after loading files: - [T Browse..

Scriptto execute before loading files: -

[] Automatically reload files ifthey are modified by an external application

< 0K [:e Cancel] [0 Help]

.

Now we are working with a project, as shown in the window title:

-Gx - —_—

File View Project Configure Commands Scripts Window Help

B-258 (0EH Meda||d@HED

™, Select Device... | |[AmelAT8ILS51 [ISP Mode]

Now we need to set parameters of serial numbers written to each target device. To do this, open
serialization settings:

roject |Conﬁgure Commands Scripts Window Help
Window Help 5& M Select device... F3

= Device selection history... Alt+F3
JEEE or t Devi !
.] = £l Buffers.. F5

Serialization, Checksum, Log file... [F6]

8 Serialization, Checksum, Log file... h F6

B Data caching, stand-alone jobs...

In the dialog that appears, select the "Serial Number" tab:

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 141

[

Serialization, Checksum, Log File

General SEFiEﬂI[\\‘JUﬂ’IbEF Checksum | Signature String | Custom Shadow Areas | Log Filel

L"l.f
[| Write S/N to address: 0 - in layer. | Code

Check off the "Write S/N address" check box, and enter 0x200 into the address field. Set serial
number size equal to 4 bytes, set increment to 1, then click OK:

Serialization, Checksum, Log File @

General | Serial Number |Checksum | Signature String | Custom Shadow Areas | Log File|

[]write §/N to address: =200 - in layer: [Code v]
Current serial number. 0 B}z‘ce Order D_lsplayS,’N as-
@/ LSE first) Decimal
S/N size, inb - - —
INsize. in bytes: [4] ©) MSB first @ Hex
(@ Increment serial number by: 1 -
_' Use scriptto increment serial number: - Browse...

Store serial numbers in registry
[] separate storage for each Windows user

Separate serial number for each device type

N\
[?\ oK |[®% cancel |[@ Hebp

We are almost done setting project options. We need to turn on data caching; to do this, run menu
command Configure -> Data Caching...:

© 2017 Phyton, Inc. Microsystems and Development Tools

142

CPI12-B1 In-System Device Programmer

Prc:jectl(:{mﬁgure Commands Scripts Window Help

& a i Select device... F3

| [Device selection histary... Alt+F3
ct Devi

-~ | g Buffers.. F5

4 Serialization, Checksum, Log file... F&

Data caching, stand-alone jobs...

-

This brings up a dialog for serialization parameters. Check off the Enable Caching check box, then
click OK:

Stand-Alone Mode and Data Caching Settings

Seftings |Stand—AIcme Jobs | Serializatinn|

Buffer data caching to the programmer memaory card(s)

Cnrfant rachinn state:

Data caching status now looks like this: H ! Awaiting AutoProg ‘

File View Project Configure

Now the_ projgct has to be sawed, because projects are not saved ” ﬁ '@‘5 a H @j EEQ
automatically: ” % Sele Save project ”@

Connect your <%CPI2-B1%> to a target device and launch the Auto Programming command in the
Program Manager window:

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 143

Program Manager E3]

Program Manager | Options | Staﬁstjcs|

| Device Status: Auto-detect off

Buffer: |Buffer #0: Code (128 KB). bytes v|

Functions

- Blank Check

- Program ‘@ hExecute ‘
- Head Lag

- Verify Repetitions:

- Erase 1
-Read Lock Bits

D Lock Bits . ‘ & EditAuto.. ‘

-

‘ e Help ‘

|f-‘kuto Programming

If the Auto Programming operation completed successfully, the history field will display a line saying
"Caching data to the programmer SD card enabled"; caching status will read "Cached."

Operation Progress

Ready

File loaded: "C:\Work\Monitors\R TX-028.hex"

Device #1: S/N: 00000000, Checksum: 0x000000F0 Auto ” B cached o
Erasing... Ok [0:01, 14:01:36]

Checking... Ok [0:00, 14:01:38] H

Programming... Ok [0:04, 14:01:42]
Verifying... Ok [0:00, 14:01:44]
Caching data to the programmer SD card enabled ———

Now we need to generate serial number information for writing them into target devices. To do this, either
click on caching status field or select menu command Configure -> Data Caching...:

Project |Cc:-nfigure Commands 5Scripts Window Help
a M Select device.. F3
\uto HHi Cached H [T Device selection history... Alt+F2

; wm ct Devi
9 Butter. :

Serialization, Checksum, Log file... Fe

Data caching, stand-alone jobs...

This brings up standalone mode options dialog. Select the Serialization tab and specify amount of
10000 devices to generate serial numbers for. Then click Start Generation button:

|

© 2017 Phyton, Inc. Microsystems and Development Tools

144

CPI12-B1 In-System Device Programmer

Stand-Alone Mode and Data Caching Settings

| Settings | Stand-Alone Jobsl Serialization ||

For stand-alone programmer operation you can generate serialization information (serial numbers,
See help for details.

Project RTX-0238

Generate serialization information for 'IDDDD'| |device samples, max: 57663

If programmer(s) contain still unused records:

(@) Discard them and replace with new ones

() Add new records to existing ones

Start generation [

checksums, etc. in advance. When generated, infarmation will me written to the programmer's memaory card.

Assign our project to a standalone job number zero by selecting "Standalone Jobs" tab and selecting

project RTX-08 for job O:

Stand-Alone Mode and Data Caching Settings

| Settings | Stand-Alone Jobs ISeriaIization|

Active Stand-Alone job number
(@) Selected by Contral. Job_Sel[x.0] pins

Defined programmatically: 7

Job #0:| =Mot assigned:

Stand-Alone Job Assignment \—
[

=Mot assigned=
RTX-028 (SST S85T25VF040B
Job #2:| <Not assigned=

Job #1:

Job #3:| <Mot assigned:

The dialog now looks like this:

© 2017 Phyton, Inc. Microsystems and Development Tools

Standalone Operation Mode 145

Stand-Alone Mode and Data Caching Settings @

Settings | Stand-Alone Jobs |Seria|ization|

Active Stand-Alone job number

(@) Selected by Contral. Job_Sel[x.0] pins

(7) Defined programmatically: | Job #0 hd

Stand-Alone Job Assignment:

Job #0:| RTX-028 (SST SST25VF040B [ISP Mode]) _ |l
Job #1:| <MNot assigned= v:|E|
Job #2:| <Not assigned> ':_
Job #3:| <Not assigned: 'i

Confirm settings by clicking "OK".

This ends preparation of the project for standalone mode. Contents of memory buffer and all settings
have been stored as a project on programmer internal SD card, information for 10000 serial numbers has
been generated, the project has been associated with standalone job 0.

One way to switch programmer into standalone mode is by selecting menu command Commands ->
Switch to Standalone Mode:

Commands | Scripts Window Help

Blank Check F8
Program F9
Verify F10
Read F11
Erase F7
Auto programming F12
Self-Tests

Switch to Stand-Alone mode... N

This brings up a dialog which is used to select job 0 to be the active job:

© 2017 Phyton, Inc. Microsystems and Development Tools

146 CPI2-B1 In-System Device Programmer
%% Switch to Stand-Alone Mode @
FProgrammer(s) will be switched to Stand-Alone mode and Stand-Alone mode
monitor will be launched. The programmer shell will exit
Active Stand-Alone job number
() Selected by Control.Job_Sel[x.0] pins
(@)Defined programmatically: Ian: #0. Project RTX-028 v
o 0K | ‘ % Cancel ‘ ‘ @ Help
7 Software Development Kit (SDK)
This section describes Phyton ChipProg-02 Software Dewvelopment Kit (SDK) called ChipProg-02
Application Control Interface.
Deelopers can use Application Control Interface to control CPI2-B1 programmers by means of their own
software.
Application Control Interface provides a comprehensive set of features to control the programming
process, including selection of device type, accessing data buffers, loading files, launching programming
procedures (also in gang mode), and more.
7.1 ACIComponents

Application Control Interface Files
The CPI2-B1 SDK includes the following components:

1. ACIL.DLL dynamic-link library which implements Application Control Interface functions.
2. ACLlib export library.

3. Header file aciprog.h to be included in user software written in C/C++ programming language.
The header contains declarations of all ACI functions, structures and constants. The windows.h
file must be included in user program before the aciprog.h.

4. A set of example files illustrating the use of Application Control Interface.

Platform Requirements

1. Phyton Application Control Interface requires Windows 7, 8 or 10 operating system.

2. ChipProg-02 software must be installed on the computer that controls the CPI2-B1 hardware. The
latest ChipProg-02 software version is available for free download from the http://www.phyton.com/

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com/htdocs/support/update.shtml

Software Development Kit (SDK) 147

htdocs/support/update.shtml webpage.

Usage with 32- and 64-bit Applications

32-bit applications must use the ACI.DLL dIl and the ACL.lib export library.

64-bit applications must use ACI64.DLL and ACI64.lib.

Otherwise, there's no difference between 32- and 64-bit applications.

¢ There's no need to dewvelop 64-bit applications for use with 64-bit operating system: both 32- or 64-bit
applications can be used in such case.

Programming Languages

Deelopers can use any programming language of his choice when working with Application Control
Interface; ACI.DLL exports its functions according to the standard rules for Windows operating system.

7.2 Using ACI

To control a CPI2-B1 programmer, user program calls functions in the ACI.DLL. When user program
calls the ACI_Launch() function, ACI.DLL launches ChipProg-02 executable UProgNT2.exe and then
controls its operations.

ChipProg-02 GUI can be made hidden or visible. In most cases there is no need to display GUI windows
or daialogs; howewer, this may be used for debugging purposes. User program can also use ChipProg-02
partially, for example to bring up dialogs that show settings, target device selection, file loading and
others. Once the programming environment has been set up, the ChipProg-02 GUI can be hidden to free
more screen space for the controlling application.

All ACI functions, when called, take either no parameters or one parameter which is a pointer to a
structure. Each such structure has its first field set to the structure size; this ensures compatibility of
different ACI.DLL versions. The only exception is the ACI_IDECommand() function; this sacrifices
uniformity in favor of simpler pseudo-function declaration. The aciprog.h header file provides declarations
of the parameter-carrying structures.

Names of all the ACI objects (functions and structures) conform to the same naming convention. All
names begin with ACI_ prefix. Names of the parameter structure patterns end with _Params suffix.

Numeration of all memory buffers and layers of memory buffers startins with zero. All addresses are 64-
bit long and consist of two 32-bit parts (lower and upper), to make them compiler-independent. For
example, if the compiler recognizes the uint64 type, then the structure ACI_Memory_Params can be
initialized as follows:

ACl _Menory_Parans npar ans;
*((uint64 *)nparanms. AddressLow) = 0x123456789ABC;

Note. All addresses in the structures are shown in the format specified by the device manufacturer, i.e.
in Bytes, Words, etc. For example, for any 16-bit microcontroller the address format is always a word

not a byte.

ChipProg-02 automatically allocates buffer number O so that it always exists and does not have to be

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.phyton.com/htdocs/support/update.shtml

148

CPI2-B1 In-System Device Programmer

7.3

7.4

explicitly created.

All ACI functions provide return code to the calling application. The return code constants -
ACI_ERR_xxx - are defined in the aciprog.h file included into the ACI software set.

Controlling Multiple Programmers via ACI

ACI can be used to launch any number of programmers and control each of them individually. When
launching a programmer, ACI creates internal object called connection that identifies the programmer.
The ACI_SetConnection function is used to select a particular programmer. Once a connection
(programmer) is selected, all further calls to ACI functions will use that connection (i.e. they all will affect
only the selected device programmer). If there's only one programmer, the connection is selected
automatically.

It is important to keep in mind that more than one ChipProg-02 can be launched in either the Single-
programming or the Gang-programming mode. If, for example, a cluster of six CPI2-B1 programmers
is launched in the gang mode, a whole cluster driven by the ACI will represent a single connection, and
not six connections.

ACI Functions

This section provides an oveniew of Application Control Interface functions. Detailed description of each
function can be found in the ACI Fuctions reference section.

Calling some functions requires filling in and passing structures that specify memory locations, pointers
and other objects associated with the called function, while other functions do not take any parameters.

Table below shows ACI functions grouped by functionality. Most functions are grouped in "bidirectional
couples” (In-Out or Get-Set).

© 2017 Phyton, Inc. Microsystems and Development Tools

Software Development Kit (SDK)

149

Application Control
Interface function name

Brief description

Associated
windows
and dialogs

Associated Application
Control Interface
structures

1. ACI

functions that start and stop progr

amming sessions

Starts the ChipProg-02 program. This
function must alw ays be the very first in the

ACI Launch : - NA ACI Launch Params
I chain of other Application Control Interface

functions that form the programming session.

Closes the ChipProg-02 program. This

function must alw ays be the last one in the
ACI Exit chain of other Application Control Interface NA NA

functions. It completes the external control
session.

2. ACI functions that configure the programmer or get its current configuration

Loads the programmer configuration
parameters from the host computer to the

ACI_LoadConfigFile NA ACI Config_Params
programmer.
Saves the programmer's current
ACl SaveConfiaFile configuration parameters to the host NA ACI Confia Params
ACl SaveContigFile Aatl_tonfig_Farams
computer.
3. ACI functions that get the target device properties or set them

Gets the manufacturer's name (brand) and
the part number of the device currently being

AC| GetDevice programmed from the programmer to the host | Select Device | ACI_Device Params
computer.
Sets the manufacturer's name and the part

ACI SetDevice number of the device to be programmed in Select Device | ACI Device Params

the programmer.

4. ACI functions that get current parameters of the buffers and layers or configure them

ACI GetLayer

Gets the parameters of a specified memory
buffer and layer fromthe programmer to the
host computer.

Buffer Dump

ACI Layer Params

ACI| CreateBuffer

Creates a memory buffer w ith specified
parameters in the programmer.

Buffer Dump

ACI| Buffer_Params

ACI| _ReallocBuffer

Changes a size of the layer #0 in a specified
memory buffer in the programmer.

Buffer Dump

AC| Buffer_Params

5. ACI functions that read the content of the buf

fer layer or

write into it

ACI_ReadlLayer

Reads data from a specified memory buffer
in the programmer to the host computer.

Buffer Dump

ACI_Memory_Params

ACI WriteLayer

Writes data into a specified memory buffer of

Buffer Dump

ACI Memory Params

© 2017 Phyton, Inc. Microsystems and Development Tools

150

CPI2-B1 In-System Device Programmer

Application Control
Interface function name

Brief description

Associated
windows
and dialogs

Associated Application
Control Interface
structures

the host computer to the programmer
memory buffer.

ACI_FillLayer

Fills a w hole selected layer of a specified
memory buffer with a specified data pattern.

Buffer Dump

ACl Memory Params

6. ACI functions that

the programmer

get programming parameters from the programmer or set themin

. Program
! Gets current programming parameters from !
ACI GetProgrammingParams preg ap Manager > | ACI Programming Params
the programmer to the host computer. A
Options
" Program
ACI SetProgrammingParams Sets programming parameters from the host Manager > | ACI Programming Params
computer to the programmer. :
Options

7. ACI functions that

get device-specific programming options from
set them in the programmer

the programmer or

Gets current programming options fromthe Device and

ACI GetProgOption programmer to the host computer. Algorithm | ACI ProgOption Params
Parameters
Sets programming options from the host Device and

ACI_SetProgOption computer to the programmer. Algorithm | ACI_ProgOption_Params
Parameters
.) Device and

) Sets default programming options and - .
ACI _AllProgOptionsDefault programming algorithms in the programmer. P%S ACI ProgOption Params

8. ACI functions that control programm

Ing operations

Initiates a specified programming operation,
keeping under control its successful

. . . . Program .
ACI_ExecFunction completion or failure. It controls a single Manager ACI_Function_Params
programmer.
Initiates a specified programming operation
ACl StartFunction and then does' not check the operation result. Program ACI Function Params
It controls a single programmer. Manager
Used to control multiple device
ACI GangStart programmers. Initiates autg programming in Program ACl GangStart Params
oL vahgoant the gang (gang-programming) mode. Manager
ACI GetStatus Qets a c_urrent programmer status Program ACI PStatus_Params
- information. Manager
ACI TerminateFunction Terminates a current programming operation. Program NA
Manager
ACI GangTerminateFunction | Terminates a current programming operation Program ACI GangTerminate Para

© 2017 Phyton, Inc. Microsystems and Development Tools

Software Development Kit (SDK) 151

Application Control Brief description Associated | Associated Application
Interface function name windows Control Interface
and dialogs structures
on a specified site of the gang programmer. Manager ms

9. ACI functions that save files from the programmer and load files to the programmer

Saves a specified file from a specified
ACI_FileSave buffer's layer of the programmer into the Buffer Dump | ACI_File_Params
instrumental computer.

Loads a specified file from the instrumental
ACI_FileLoad computer to a specified buffer's layer in the | Buffer Dump | AC| File_Params
programmer.

10. ACI functions that display programmer's windows and dialogs for setting up and
debugging external programming sessions

ACI_SettingsDialog Displays the programmer Preferences dialog. ;O;Z?:;i; NA
ACI SelectDeviceDialog Displays the Select Device dialog. Select Device | NA
ACI BuffersDialog Displays the memory buffers setting dialog. Buffer Dump | NA
ACI LoadFileDialog Displays the file loading dialog. Buffer Dump | NA
ACI_SaveFileDialog Displays the file saving dialog. Buffer Dump | NA

7.5 ACI Structures

This section provides an oveniew of the structures used in calls to ACI functions. Detailed description of
each structure can be found in the ACI Structures reference section.

Structure The ACI function that uses the structure
ACI_Launch Params ACI_Launch

ACI_Config_Params ACI_LoadConfigFile, ACI_SaveConfigFile
ACI_Device Params ACI_GetDevice, ACI_SetDevice,
ACI_Layer_Params ACI_Getlayer

ACI_Buffer Params ACI_CreateBuffer, ACI_ReallocBuffer
ACI_Memory_Params ACI_Readlayer, ACI WriteLayer, ACI_FillLayer
AL sebugannngRaans
ACI_ProgOption_Params ACI_GetProgOption, ACI_SetProgOption
ACI_Function_Params ACI_ExecFunction, ACI_StartFunction
ACI_PStatus_Params ACI_GetStatus

ACI_File_Params ACI_FileLoad, ACI_FileSave
ACI_GangStart Params ACI_GangStart, ACI_GetStatus
ACI_GangTerminate Params ACI_GangTerminateFunction

© 2017 Phyton, Inc. Microsystems and Development Tools

152

CPI2-B1 In-System Device Programmer

7.6

Here is an example of the structure syntax:

typedef struct tagAC _Buffer_Parans

{
U NT Size; /Il (in) Size of structure, in bytes
DWORD Layer 0Si zeLow, /l (in || out) Low 32 bits of layer O size, in bytes
DWORD Layer 0Si zeH gh; /1 (in || out) Hgh 32 bits of layer 0 size, in bytes

11 Layer size is rounded up to a nearest val ue
supported by progranmer.
LPCSTR Buf f er Narrg; /1 (in) Buffer nane
U NT BufferNunber; /1l For ACl _CreateBuffer(): out: Created buffer nunber
/1 For ACI _ReallocBuffer(): in: Buffer nunber to realloc
U NT NunBuffers; /1 (out) Total nunber of currently allocated buffers
U NT NunlLayers; /1 (out) Total nunber of layers in a buffer

} AC _Buffer_Pararns;

Each structure includes a number of parameters (here Size, LayerOSizeLow, NumBuffers, etc.). The
parameter's name follows its format (UINT, DWORD, LPCSTR, CHAR, BOOL, etc.). The comment to the
parameter begins with a symbol in parentheses showing the direction in which the parameter is passed,
as follows:

e (in) - the parameter is sent from the instrumental computer to the programmer;

¢ (out) - the parameter is sent from the programmer to the instrumental computer;

e (in || out) -the parameter can be sent in either direction, depending on the ACI function
context.

Examples

Phyton ChipProg-02 SDK comes with several usage examples of Application Control Interface functions
and structures. Examples reside in the ACI\Programmer ACI Examples subdirectory of CPI2-B1
installation directory.

Examples are written in the C language and are projects that can be built using Microsoft Visual
Studio® 2008. Project sources can also be compiled using other C/C++ compilers, sometimes with
minor adjustments. Building a project creates a Windows console application executable.

To adjust an example project (or a part of it) for use in your application, in the main() function adjust
paths to the ACI functions. This includes paths to the CPI2-B1 executable file, to file loaded into
programmer memory buffer or saved from buffer to disk. You also have to specify real target device type.
Sample main() function fragment is shown below.

I*+ main ° 01.07.09 17:37:24*/

/I Launch the programmer executable
if (!Attach("C:\\Program Files\ChipProg-02\\6_00_01\\UPrognt2.exe", ", FALSE)) return -1,

/I Select device to operate on
if (!SetDevice("Microchip”, "PIC16C505 [ISP HV Mode]")) return -1,

/I Load .hex file to buffer O, layer O

© 2017 Phyton, Inc. Microsystems and Development Tools

Software Development Kit (SDK) 153

if (!LoadHexFile("C:\\Program\\test.hex", 0, 0)) return -1,

All examples use the ACI.DLL file, therefore that file must be located in the same folder where the
example executable file resides, or in a folder listed in the PATH environment variable. For provided
examples, ACI.DLL file has already been copied to the folder in which Microsoft Visual Studio creates
executable files.

Description of the Examples

Each example has an opening comment briefly describing the program purposes; more comments are
added to the code. All examples start with calling the ACI Launch() function that launches the
programmer.You will have to adjust the path the CPI12-B1 executable that is passed as parameter to the
Attach() function. After that, target device type is selected; you will need to modify that accordingly.

AutoProgramming.c

This is the simplest and most frequently used example of the CPI2-B1 control by an external program.
User program launches the programmer, selects the PIC18F242 target device, loads the test.hex file into
programmer buffer, sets default programming options, and then executes a preset Auto Programming
batch of functions: Erase, Blank Check, Program, Verify.

SaveMemory.c

This example shows how to save a binary image of a device to a file on disk. First, the user program
makes sure a device is insertion into the programmer socket by calling the ACI GetStatus(&Status)
function. After detecting correct and reliable insertion, the program reads data from the specified address
range of SST89V564RD device's memory and saves it to the file test.bin on disk.

Checksum.c

This example shows how to calculate a checksum of data read from a device. First, user program
verifies device insertion into programmer socket by calling the ACI GetStatus(&Status) function. After
detecting correct and reliable placement, the program calculates the real size of the SST89V564RD
device flash memory by executing the ACI ExecFunction function. It then allocates the buffer 'buf in the
host computer memory for holding data read from the device, reads the data into this buffer, and
calculates buffer content checksum.

LongProgramming.c

This example shows how to monitor the AutoProgramming procedure that takes a long time.
Programming is launched by calling the ACI_StartFunction. Completion percentage of the operation is
then checked by calling the ACI GetStatus function. If the operation fails, the programmer issues an
error message; otherwise operation is continued.

ProgrammingOptions.c

This example shows how to read, display, and change options set in the Device and Algorithm
Parameters Editor window. First, the program checks device insertion in the programmer's socket by
calling the ACI GetStatus() function. After detecting correct and reliable insertion of the device, the
program reads current set of options by calling the ACI GetProgOption() function, and prints them the
options. Then the program changes the Vpp from default value to 10.5V and disables device Brown-out

© 2017 Phyton, Inc. Microsystems and Development Tools

154

CPI2-B1 In-System Device Programmer

7.7

Reset feature.
APl Explorer

API Explorer is a GUI application program that allows experimentation with ACI functions without writing
custom code. You can vary ACI function call parameters, study return codes, and see code in C
programming language recommended for performing function calls. API Explorer is shipped as part of
Phyton ChipProg-02 package. Figure below shows API Explorer window.

i API Explorer for Application Control Interface SDK EI@
: What is ACI? —
Function: ACI_Launch < B3 GTTT) [@ Heb e D (8 Bt |
Parameter structure ACI_Launch_Params: C code snippet: Copy code to clipboard
UINT Size =| sizeof(ACI_Launch_Params) + | BOOL result; .
ACI_Launch_Params ln_params;
LPCSTR ProgrammerExe =| UProghT2.exe v | memset{&ln_params, @, sizeof(ln_params));
LPCSTR CommandLine =| /ml - . .
1n_params.Size = sizeof(ACI_Launch_Params);
BOOL DebugMode =| TRUE * | 1n_params.ProgrammerExe = "UProgNT2.exe”;
. 1n_params.CommandLine = "/ml";
W (ImEsss - " | 1n_params.DebughMode = TRUE;
LPVOID ConnectionId = -
result = ACI_Launch{&ln_params);
CHAR ProgrammerName = v | if (result != ACI_ERR_SUCCESS)
}
2
Result: Clear results

ACI_Launch() = ACI_ERR_SUCCESS: Success
ACI_Launch_Params on return:

Size

1 RUE

NumSites
ConnectionId
Programmeriame

Bx13B2AER
"CPIZ2-B1"

The name of ACI function to call is shown In the upper left corner of the window. In the figure the function
is ACI_Launch. The drop down list contains names of other functions. Help button brings up description
of the selected function.

Below function name is the title of the structure used to pass parameters to the function. in the figure
this is ACI_Launch_Params structure. Structure body follows its name and contains field names and
types. Each field can hawe its value set for the function call. Input parameters are shown in bold type; on
the figure these are Size, ProgrammerExe, CommandLine n Debug.

To the right of the list of structure fields is sample code in C programming language that performs the
call with parameter passing. This code can be copied to clipboard to be pasted into user program.

To call the function, press the Call button. Results pane will show the return code, a string describing
the result, and structure field values. Output parameters that are results of the function call are shown in
black, input parameters that the function does not change are gray. To get the string description of the
result, the program automatically calls ACI_ErrorString function once the selected function returns
control.

© 2017 Phyton, Inc. Microsystems and Development Tools

Software Development Kit (SDK) 155

How to set values for structure fields.

The first field of each structure is Size which is the size of the structure itself. When a function is
selected, API Explorer sets this value to the 'sizeof of the structure; in the figure it is sizeof
(ACI_Launch_Params). This field should be left as is; while experimenting, a number can be entered
here.

If a field type is string, the text in the field can be quoted. The program missing quotation marks
automatically. The special string NULL is treated literally, as a null pointer.

If a field type is int or Boolean, you can enter 1 or TRUE, and 0 or FALSE which will be placed as is into
generated code. In the figure TRUE value is entered in the DebugMode field.

Numeric values may be entered in decimal or hexadecimal format according to C language conventions.
An example of hexadecimal number is OxFFFO.

Fields left blank will be set to zero. This is true also for fields of type string; for example, LPCSTR
pointers will be set to NULL, and function call will result in error.

Generated Code Fragment

As shown in the figure, the parameter structure initially is filled in with zeros:

memset(&In_params, 0, sizeof(In_params));

Then follows the code to set values of structure field for which values are non-empty. All other fields will
contain zeros because the structure has already been zero-filled.

Specifics of ACI_ReadLayer, ACI_WriteLayer functions

When calling ACI_ReadlLayer the program allocates its own data buffer. If data size specified in
ACIl_Memory_Params.DataSize field exceeds 128, the program will impose size limit if 127 cells.

To define data to be written by ACI_WriteLayer call, ACI_Memory_Params.Data must contain
hexadecimal numbers without the 0x prefix, for example: CO 03 FF. Value of the
ACIl_Memory_Params.DataSize field must be equal to the count of specified numbers.

Using API Explorer

All function call are carried out and not simulated. API Explorer allocates and fills in structures and
actually calls functions in the ACI.DLL library.

When API Explorer is started, the ACI_Launch function is automatically selected because without
calling it first other functions cannot be activated. Filename of the CPI12-B1 executable is specified
without full path since it resides in the same directory as API Explorer executable. The CommandLine
field contains option /1 which launches programmer in demo mode. If you would like to use one or more
real programmers connected to the computer, option /1 must be remowved.

When deweloping custom programs that controls programmers using ACI, please be sure to update the

© 2017 Phyton, Inc. Microsystems and Development Tools

156

CPI2-B1 In-System Device Programmer

8.1

8.1.1

library ACI.DLL and aciprog.h header file in the directories where you executables reside. The ACI.DLL
may be updated in future CPI2-B1 releases.

Scripting

Scripting Overview

ChipProg-02 application can execute commands contained in script files. Scripting is a convenient way
to automate programming process when using CPI2-B1 programmers.

Scripts can be used to perform various operations, such as automatically load data into memory buffers,
calculate checksums, initiate device programming, pause programming in case of an error, manipulate
windows, and others.

For the purpose of customizing CPI2-B1 user interface (and for debugging purposes) scripts can create
additional windows of two types: the User window and the 1/O Stream window. Scripts can also create
custom menus.

Scripts can send messages to Console window or to User window created from within the scripts.
User windows can display text and graphical data.

ChipProg-02 scripting language is similar to C programming language; most C language features are
supported, except structures and pointers. However, there are some differences. The scripting subsystem
supports many built-in functions, such as printf(), sin() and strcpy().

Scripts are stored in files with filename extension .CMD.

The scrips controls and associated dialogs and windows are concentrated under the Script menu. The
major dialog that controls scripts is the Script Files dialog.

How to write a script file

Scriptis similar to a in C language program. You can use the ChipProg-02_built-in editor or any other text
editor to create or edit scripts. You can store scriptfiles in your working directory or in the ChipProg-02
installation directory.

Note that you must not use special characters (braces, dash, etc.) in the script file names.

How to run a script file

To start, stop, restart, and debug a scriptfile use the Script Fles dialog.

The Reference section contains detailed information about scripting.

Simple example

This sample script loads a file, performs automatic programming, and displays the result.

#include <system.h>
#include <mprog.h>

© 2017 Phyton, Inc. Microsystems and Development Tools

Scripting 157

void main()

{

LoadProgram (“test.hex’, F_HEX, SubLevel(0, 0));
file
to buffer 0, sub-level 0
InsertTest = TRUE;
if (ExecFunction("Auto Programming”) == EF_OK)
{
if (ExecFunction("Verify', SubLevel(0, 0), 10) != EF_OK)
{
printf("Verify failed: %s", LastErrorMessage);
return;
}
printf("Verify ok.");
}
else
printf("Programming failed: %s", LastErrorMessage);

}

8.2 The Startup Script

/I load file "test.hex' thatis an Intel HEX
I

/I settesting of chip presence to "on"
/I perform an automatic programming

I verify 10 times

I/l display error message if verify failed
Il terminate script

/I display Ok result

/I display error message

When the ChipProg-02 application starts, it automatically runs the start.CMD script if it exists. This is similar to
execution of the autoexec.bat file in Windows. ChipProg-02 firstlooks for start.CMD file in the current directory;
ifitis not found, ChipProg-02 then looks for start.CMD in its installation directory. If the START.CMD is not

found, the default CPI12-B1 GUI shell will open.

8.3 Running Scripts

Scripts can be started and restarted in several ways. The easiest one uses the commands of the Script
Files dialog. Ascriptcan be also be started by calling the StartCommandFHle() function from another

script.

© 2017 Phyton, Inc. Microsystems and Development Tools

158 CPI12-B1 In-System Device Programmer

8.3.1 The Script Files Dialog

This dialog is used start, stop, and debug scripts.

< Script Files
Scrlptﬁles list
- ' Terminate
SCANNER "SCANNER" Id 2 Stopped PC 00020068 (”SCANNER'}
Terminate All
Bestart
Debug
Start new script file
Scriptfile name:
|y:Rray‘LuproganHscanner.cmd v) Browse..
Defines:
| v
#include-file folders:
| v
Debug (open Script Source window)
Stat :
[#] Auto-save scriptfile sources
<" Done @ Help

In the top pane of this dialog you see the list of loaded script files along with the state of each script. A
script can be in one of the following states:

State of Script Description

Stopped Execution of the scriptfile is temporarily stopped.

Running The scriptfile is being executed.

Waiting The scriptis waiting for an event. This state is initiated by calling certain

wait functions in the script file text (for example, Wait).

Cancelled The script execution is terminated, but the script file is not yet unloaded
from the memory.

To select a script highlight its name in the window. The four buttons on the right of the list affect the
highlighted script:

© 2017 Phyton, Inc. Microsystems and Development Tools

Scripting 159

Button Description
Terminate Unloads the selected scriptfile if it can be unloaded. Otherwise, it sets up

the Unload Request flag for the selected script that then goes to the
Canceled state.

Terminate All Unloads all script files visible in the window.
Restart Restarts the highlighted script.
Debug Switches to the Debug mode for the highlighted script. This command

stops execution of the script and opens it in the Script Window for
debugging. If the scriptis in the wait state, execution will be stopped
immediately after the script returns from the Waiting state.

When you use several script files simultaneously and unload or restart some of them, remember that
script files can share global data and functions. If one script accesses data or functions belonging to a
script that is already unloaded, the script interpreter will issue error messages and the active script will
also be unloaded (terminated).

The buttons and fields in the lower part of the dialog box determine how scripts are run:

Dialog Control Description

Script Fle Name Specifies the filename of the script for loading. You can either type in file
name with full path, select it from the drop-down historylist, or browse files
on disk.

Browse Opens the Load/Execute Script Fle dialog for locating and loading script

files into the Script FHle Name box.

Defines Defines preprocessor variables. For more information, see Preprocessor
Variables below.

#include-file Specifies directories to search for files specified in the #include

Directories <file_name> directive(s). To specify more than one directory separate them
by semicolons. The current directoryis searched as well.

Debug (open Script If this boxis unchecked, a script file automatically start execution upon the

Source window) file loading. If the boxis checked, then upon loading script file a window for
debugging is opened. See also How to Debug a Script File.

Auto-save Script Fle If this boxis checked, clicking the Start button automatically saves the

Sources source texts of all script files visible in the Script Source windows.

Start Starts the script file specified in the Script Fle Name box.

Preprocessor Variables

The content of the Defines text boxis equivalent to the #define directive in C language. For example, if you
type DEBUG in this text box, the result will be as if the #define DEBUG directive is placed in the firstline of
the script source.

You can use Defines to specify values for variables. For example, DEBUG=3 is equivalent to #define DEBUG
3.

You can list several variables in a line, separated by semicolons. For example:
DEBUG, Passes=3; Abort =No
Also, see Predefined Symbols at the Script File Compilation.

© 2017 Phyton, Inc. Microsystems and Development Tools

160

CPI2-B1 In-System Device Programmer

8.3.2

8.3.3

8.4

The User Window

User window is a window created by calling built-in OpenUserWindow function from within a script. User
window provides the following functionality:

e displaying text;
¢ displaying graphics (indicators, LEDs, buttons, arrows, etc. by calling built-in graphic functions);
¢ responding to events (see WaitWindow Event).

These capabilities allow write scripts working in interactive mode.

All functions working with windows (including User windows) take window identifier (handle) as a
parameter. Because of this you can have several windows of the same type open atthe same time.

User window does not have context menu. However, it provides a toolbar with 16 buttons (0...F), and each
button can be programmed to perform a certain function. Pressing a button generates the
WE_TOOLBARBUTTON event.

The I/O Stream Window

I/O Stream window is created by calling built-in OpenUserWindow function from a script. Scriptuse

windows of this type to display text I/O streams. The most common examples of /O streams are the
characters input from PC keyboard and text messages output by the script. Also, you can assign I/O
streams to files and input data from those files.

Functions that operate on windows (including the I/O Stream window), receive window identifier (handle)
as a parameter. Therefore, several windows of the same type can be open simultaneously.

When a function sends some text to this window, the textis appended at the current cursor position. To
startthe next line the function outputs \n' (line feed character).

I/O Stream window features two text display modes, with or without automatic line advance (wrap). In
automatic line feed mode, text that does not fitinto currentline is wrapped to the next line. If auto wrapping
mode is off, if the line does not fitin the window itis truncated. The Wrap button in the toolbar toggles the
this modes. The Clear button clears the window contents.

Windows of this type do not have context menu.

Debugging a Script

Ascript can be started in Debug mode. This is usually necessary while you master the script and need to
check if it properly works and make necessary corrections. To start a scriptin debug mode, highlightits name
in the Script Fles dialog and click the Debug button. This brings up the Script Window.

The ChipProg-02 application is designed for source-level debugging. Scripts are debugged in the same way
the programs are debugged, executing script step-by-step or up to cursor, setting breakpoints, watching
variable values, etc. Debugging process uses Script Source and Watches windows. If the Debug option is
setin the Script Fles dialog, the Script Source window opens automatically when starting the script.

When the StartCommandFile() function in a scriptis called to start another script, you can specify parameter
instructing it to start the new scriptin debug mode and open the Process window.

To view the value of a script variable in the Watches window, use the Add Watch command in the Script
window menu or the Add Watch toolbar button. This can also be done manuallyin the Watches window.

© 2017 Phyton, Inc. Microsystems and Development Tools

Scripting 161

For example, if you need to view the value of the addr variable, which is used in a script named TEST, place
the #TEST#addr construct in the Watches window. If addr is declared public, thatis, outside the function,

then it should be written as ##addr.

8.4.1 The Script Window

The Script window is divided into two panes; the left pane displays the script source, while the right pane is
the AutoWatches pane.
Syntax constructions and the lines that correspond to the current Program Counter (PC) value (blue strip)
and the breakpoints (red strips), are highlighted in the script file text (for more information, see Syntax
Highlighting).

Script: Rolling.cmd (20,32) [FE=E
ﬁ Save Step Run | ‘ Break | +Watch | Origin ‘ New PC | Res‘far‘t| Setup

* if (handle != -1) ~ | lhandle=xFFFFFFFF

{ m Save file
. read(handle, rollingTmp, si cte Ctrl+T handle=@xFFFFFFFF, rollingTmp="\0\@IMIKY\@"
. close(handle); P handle=0xFFFFFFFF
) Run Ctrl+U
Run to cursor F4

* uint8 RAD_SYNC_L = rollingTmp Origin Ctrl+O RAD_SYNC_L=0, rollingTmp="\@\0IMIKY\@"

* uint8 RAD ID H = rollingTmp[6 New PC Ctrl+N RAD ID H=8x59, rollingTmp="\8\0IMIKY\@"

+ uint8 ID = RADID H = RAD.ID | [. .. I TD=0x59, RAD_ID_H=0x59, RAD_SYNC_L=0

< uint8 RAD_SYNC_H = rollingTmp 99 point : RAD_SYNC_H=8xB2, rollingTmp="\@\@IMIKY\@",
+ uint8 ID2 = RAD SYNC H + RAp | AddtoWatcheswindow —Ctrl+W 1D2=0xB2, RAD SYNC_H=0xB2, RAD SYNC L=@

¢« rollingTmp[2] = RAD_SYNC_H; Restart Ctri+E rollingTmp="\@\@IMIKY\@", RAD_SYNC_H=0xB2
= rollingTmp[3] = (Ox@0FF & (RA K rollingTmp="\@\@IMIKY\@", RAD_SYNC_H=0xB2
+ rollingTmp[4] = ID2; [Right pane on rollingTmp="\@\@IMIKY\@", ID2=8xB2

o rollingTmp[5] = (@x00FF & (RA []Lline numbers rollingTmp="\@\@IMIKY\@", RAD_SYNC_L=0

= rollingTmp[6] = ID; i rollingTmp="\@\@IMIKY\@", ID=0x59

+ [rollingTmp[7] = (@xBOFF & ip2 Help onwindow.. rollingTmp="\@\@IMIKY\@", ID2=8xB2

Help on word under cursor &

< Properties » 2 < 2

"ROLLING" Id: 3, Stopped, PC=00030271 ("ROLLrver;
Note. To get help on a function or a variable, click mouse button on the function or variable name in the script
source.

8.4.1.1 Menu and Toolbar

The context menu contains the following commands, most of which are duplicated by the toolbar.

Menu Command Toolbar Button

Step Step
Run Run
Run to Cursor

Stop

Description
Executes one operator of the script.

Starts continuous execution of the scriptin the
window. The script execution can be stopped either by
reaching a breakpoint or by the executing Stop
command.

Executes the script up to the line containing cursor.
Alternatively, you can double-click the line to carry out
this command.

Stops the running script.

© 2017 Phyton, Inc. Microsystems and Development Tools

162

CPI2-B1 In-System Device Programmer

8.4.1.2

8.4.2

Origin Origin Shows script source from the line whose address
corresponds to the script file Program Counter. This
operation is not available when source lines do not
exist for the program addresses.

New PC New PC Sets the script's Program Counter to the address
corresponding to the line containing cursor.

Toggle Breakpoint Break Sets or clears breakpoint at the address
corresponding to the line containing cursor. When you
execute the Run or Run to cursor command, the
program execution will be stopped at the breakpoint.

Add to Watches +Watch Opens the Watches window (if not already open) and
Window places the name at the cursor into it.
Restart Restart Restarts execution of the highlighted script.

The AutoWatches Pane

The ChipProg-02 application displays the visible portion of the scriptin the Script window. The names of
variables, called AutoWatches, which belong to the visible script lines, are listed along with their values in
the right pane of the window. When you scroll through the Script window, contents of the AutoWatches pane
refreshes automatically.

The AutoWatches can be displayed in binary, hexadecimal, decimal or ASCII format. To select a format, click
on the Setup toolbar button or right click anywhere in the pane to open context menu.

The Watches Window

AutoWatches pane of the Script window displays values of currently visible script variables. In addition, you

may want to monitor other explicitly specified script variables and expressions. To do so, ChipProg-02
provides the Watches window. For each variable, the window displays its name, value, type and address, if
any.

Anewlyopened Watches window has one Main tab. You can add custom tabs (using Display Options
command in context menu) or rename any existing tabs. The tabs operate independently of each other, each
tab being functionally equivalent to a separate Watches window. However, if desired, you can open several
Watches windows.

Each Watches window has the +Watch toolbar button. Clicking on this button opens a dialog for adding a
selected object to the Watches window.

Grids in the Watches Window

For better readability, the Watches window can be divided into cells by vertical and horizontal grid lines.
Enable the grid by checking corresponding boxes in the Configure menu > Environment > Fonts tab.

© 2017 Phyton, Inc. Microsystems and Development Tools

Scripting 163

Context Menu

The window context menu contains the following commands, most of which are duplicated by toolbar

buttons.

Command Description

Add Watch Adds one or more objects to the window. Opens the Add Watch dialog to
choose an object by name. Also, you can enter an expression as a name.

Delete Watch Deletes a selected object from the Watches window.

Delete All Watches Deletes all watches from the window.

Modify Opens the Modify dialog to set a new value for a selected variable. Alternatively,
just enter the new value.

Move Watch Up Moves selected watch up the list.

Move Watch Down Moves selected watch down the list.

Display Options Opens the Display Options dialog to change the display settings for selected

objectand also to add/delete tabs to/from the window.

8.4.2.1 The Display Watches Options Dialog

Use this dialog to set the display options for the selected variable or expression in the Watches window.

Dialog Control Description

Watch Expression Contains selected expression. The drop—down list contains the
previously used expressions.

Display Format Specifies the format for displaying selected expression (binary,
hexadecimal, decimal, or ASCII).

Pop-up Description Contains check boxes that choose format for displaying pop-up SFR
descriptions.

Display Bit Layout If this boxis checked the SFR bits will be displayed in the pop-up layout
descriptions.

Display Bit Descriptions Checking this box enables displaying the pop-up descriptions for the
SFR bits, if any.

Auto-size Name Feld When this boxis checked and when vertical grid is visible (see note

below), the window automatically adjusts the Name column width to fit
the longestrecord in the column.

Tabs Lists all tabs presentin the window.

Add Tab Opens the Add New Tab to Watches Window dialog for entering a
new tab name. The window adds the new tab upon pressing OK.

© 2017 Phyton, Inc. Microsystems and Development Tools

164 CPI12-B1 In-System Device Programmer

Remove Tab Removes the tab selected in the Tabs list.

Edit Tab Name Opens the Edit Watch Window Tab Name dialog for editing tab name.
Global Debug/ Display Opens Debug Options dialog.

Options

Note. To make grids visible in the Watches window, open Configure menu, the Environment dialog, the
Fonts tab and check corresponding boxes in the Grid field.

8.4.2.2 The Add Watch Dialog

Use this dialog to add symbol names (for example, a variable name or an expression) to the Watches
window. The dialog contains a list of symbol names defined in, or known to, the program.

Dialog Control Description

Name or expression to Enter the symbol name or expression to be added. You can specify
watch: several names and expressions either manually (separated with
semicolons) or by selecting from the list with the Ctrl key pressed.

History List of previous names and expressions.

8.5 Script Editor

Ascript is similar to a source program written in C programming language. Scripts can be created and
edited using ChipProg-02 built-in editor described below or using any other text editor. Scripts can be
stored as files in your working directory or in the directory where the ChipProg-02 is installed.

To open a built-in editor select Script menu > Editor window. The Editor toolbar that contains all buttons
related to editing is normally hidden. To customized editor toolbar right click on a blank area in the main
toolbar, select Customize in the drop-down menu, and check the boxes for editor functions that you want to
make visible.

To create a new script file and open it for editing, select Script menu > Editor window > New. This will
open a blank window shown below. Right clicking in the window brings up the Editor menu with buttons
you can add to the local Editor toolbar. On the figure the toolbar is shown above the window.

© 2017 Phyton, Inc. Microsystems and Development Tools

Scripting

165

IDEEBES|B rB8R2S|RRRE| RN

noname? (1,12)

Now you can edit the scriptin the window.

Note that you should not use the punctuation characters (braces, dash, etc.) in the script file name.

To finish editing click on the Save button in the Editor toolbar, the program will prompt you for script

filename and location.

Undo Save |Save As| Copy Cut Paste | Search | Search Next | Search/R
[}ﬂ Undo Ctrl +Z, Alt+Backspace
K Save file Ctrl+S
i Save file as...
= Print...
W3 Copy Ctrl +C, Ctrl +Ins
o4 Cut Ctrl +3, Shift+Del
| Paste Ctrl+V, Shift+Ins
Search for text... Ctrl+F
7l Repeat search F3
&) Search/Replace.. Ctrl+H, Ctrl+P
& Cisplay multi-file search results... shift+F9
Display from line number... Ctrl+L
ki Set bookmark... Alt+]
iy Retrieve bookmark... Alt+]
< “¥ Condensed mode F12 |
“# Condensed mode setup Ctri+F12 -
Device and Algorith |
Edit | minvanl [Line numbers
Name Match brace/comment Alt+Yy i
ok Return to last editing context i
- Table write prof ~ User Scripts b
- Table read pro €
F-CONFIG1 Help on window... Fi
FH-CONFIG2 Help on word under cursor Alt+F1
--CONFIGB P i »
- CONFIG4 roperties

© 2017 Phyton, Inc. Microsystems and Development Tools

166

CPI12-B1 In-System Device Programmer

8.5.1

8.5.2

The File Menu

Commands in this menu act on the currently active Edit window.

¢ EL 90

New

Open...

Save
Save As...

Print

Properties..

The Edit Menu

Opens the Editor window for a new script file.

Brings up Open file dialog to load a script file for editing. The file
name and path can be either entered or browsed here.

Saves contents of the active window to a file on disk.

Opens the Save as... dialog.

Opens standard Print dialog for default printer. You can print
entire file or justthe selection.

Common properties for open files.

Commands of this menu act on the active Edit window.

Button

/3

& <

Command

Undo

Copy

Cut

Paste

Clipboard History/
Repository

Append to
Clipboard

Cut & Append to
Clipboard

Fast Copy
Fast Move

Block Off

Description

Undoes the last text editing action performed in this window. For
example, if the last action deleted a line, then deleted line will be
restored. The number of steps provided by the Undo function is set
in the of the Configure > Editor Options > General tab.

Copies selection to clipboard. The text formatin the clipboard is
standard and the copied block is accessible to other programs.

Moves selection to clipboard..

Pastes text from clipboard, starting at the cursor position.

Opens the Clipboard History/Repository dialog.

Copies and appends selection to clipboard contents.

Cuts selection and appends itto clipboard.

Copies selection to a specified position in the same window.

Moves a block from one position in a window to another position in
the same window.

Unmarks a marked text block.

© 2017 Phyton, Inc. Microsystems and Development Tools

Scripting 167

@ Search Opens the Search for Text dialog.

@ Next Search Repeats search with parameters used in the previous search.

:@ Replace Opens the Replace Text dialog.

,_;é Display Multi-file Re-opens the last multi—file search results in the Multi-Fle Search
Search Results Results dialog.
Display from line Opens the Display from Line Number dialog for you to specify a line
number-... number. Source text will be displayed from this line.

h\% Set bookmark... Opens the Set Bookmark dialog to seta local bookmark.

h‘i Retrieve bookmark Opens the Retrieve Bookmark dialog to retrieve a local bookmark.

*f Condensed mode Toggles Condensed display mode on and off.

*é Condensed mode Opens the Condensed Mode Setup dialog.

' setup

Line numbers on/off Toggles line numbers on and off.

Return to last Activates the most recently edited Source window, and places the
editing context cursor in its final position during the edit.

Dd

8.5.3 Block Operations

Block operations are operations on blocks of text. The script Source window supports persistent blocks
and performs a full range of operations with standard (stream), vertical (column) and line blocks of text.

Non-persistent blocks In this mode, once a block is marked, you have to immediately carry out an
operation with it (delete, copy, etc.). Any movement of cursor turns the marking off. If a block is marked, then
any entered text will replace the block with the typed text.

Persistent blocks In this mode, the block remains marked until the marking is explicitly removed (hot key
Shift+F3) or the block is deleted (Ctrl+X). The Paste operation for persistent blocks has certain specifics.
Two additional block operations are available for persistent blocks: fast copy and fast move. These
operations do not use clipboard and require fewer keyboard manipulations.

To enable persistent block mode check corresponding boxin the Main menu > Configure>Editor Options>
General tab.

Standard blocks Astandard (stream) block contains a "text stream” that begins at the initial line/column of
the block and ends at the final line/column.

The Standard blocks mode is enabled by default.

Line blocks Aline block consists of lines of text. To mark a line block, put the cursor anywhere in the first
line and press Alt+Z; then put the cursor anywhere in the last line of the block and press Alt+Z once more
(the latter is not necessary if the block is to be immediately deleted or copied to the clipboard).

Line blocks are always available.

Vertical blocks Avertical block contains a rectangular text fragment. Characters within the block that go

© 2017 Phyton, Inc. Microsystems and Development Tools

168 CPI2-B1 In-System Device Programmer

beyond line ends are considered to be spaces.
Vertical blocks are convenientin cases like the following:

char Tiner0O far ;
char Tinerl far ;
char IntO far ;
char Int1l far ;

Assume the word "far" is to be moved to the place right after the word "char" in each line. The stream
blocks are of little help here. However the task can be easily done with one vertical block. Mark the
persistent vertical block containing the word "far" in each line, place the cursor on the first letter of word
"Timer0" and press Shift+F2 (fast move the block):

char Timer® far;
char Timerl far;
char Osc far;
char DMA FaF;

uint8 RAD SYNC L = rollingTmp[7];

simwmd-d DA T 0D imm 1T S rTaowem TET .

The Vertical Blocks checkboxin the the Main menu > Configure>Editor Options> General tab toggles
between the vertical block and the stream block modes. Standard blocks are enabled by default; i.e. the
Vertical Blocks checkboxin the Editor Options dialog is unchecked by default. Line blocks are always
accessible, independent of the state of the Vertical Blocks checkbox.

To mark a block, move the mouse while pressing its left button or use the arrow keys on the keyboard
while holding the Shift key. To unmark the block press Shift+F3.

Copying / moving blocks

Amarked block can be copied or moved in two ways within the same Source window: directly (fast copying,
fast moving) or using clipboard (Copy/Cut/Paste). Copying and moving blocks across Source windows or
to another application is always done using clipboard.

Note. The result of copying a stream or vertical non-persistent block depends on the INSERT mode. If the
mode is enabled, the block is inserted into the text starting at the cursor position; otherwise the copied
block overwrites the textin an area of equivalent size.

Fast copying / moving

Fast copying or moving of the blocks in the same window happens without the use of clipboard. Itis
convenient because it requires pressing the keys only once per operation. Mark a persistent block, then
place the cursor to the destination position and press Shift+F1 to copy, or Shift+F2 to move the block.

854 Condensed Mode

In the Condensed mode, onlylines that satisfy a specific criteria are displayed in the window. There are
two available criteria:

¢ line must contain the given substring;

¢ the firstnon-space character in a line must be at a specified position (column).

Examples:
(a) with the substring criterion and the substring set to "counter," only the lines containing the word
"counter" are displayed;

© 2017 Phyton, Inc. Microsystems and Development Tools

Scripting 169

(b) with the second criterion and the position setto four, only the lines in which text starts at column 4 will
be displayed.

Condensed mode brings lines having some common feature to "one place." If you attentively follow the rule
to begin a declaration of data at position 2, procedures at position 3, and interrupt handlers at position 4,
Condensed mode will help you find necessary declaration. If you comment certain lines with the same or
similar comments and use the Condensed mode with substring, you will be able to benefit from your
composing style. In Condensed mode, you can move the cursor justthe same way as in normal mode.

The criterion for displayis setin the Main menu > Script > Text Edit > Condensed Mode Setup dialog. To
toggle Condensed mode on/off, use the Edit menu command, the Condensed Mode command of the
local menu or the F12 hot key. To exit Condensed mode, press Esc; at exit the cursor returns to the position
at which it was before the mode was turned on. To exit condensed mode leaving cursor in the same line
as while in the mode, press Enter or begin editing the line.

8.5.5 Syntax Highlighting

When the Source window displays script source, it marks certain language constructs with different
colors. This feature improves readability. The following constructions are highlighted:
e Punctuation and special characters: ()[]1{}.,:;etc.
e Comments starting with // are highlighted.
e Comments enclosed in the /* */ pairs are highlighted only if the opening and closing pairs are placed in
the same line.
Strings enclosed in double or single quotation marks.
Keywords of the scripting language (for, while, and so on).
Type names of the language (char, float, and so on).
Library function names (printf, strcpy, and so on).

You can disable syntax highlighting through the Main menu > Configure>Editor Options> General
tab>Syntax Highlighting flag. In addition, you can change the color of each construction; to do so use Main
menu > Configure> Environment > Colors tab.

8.5.6 Automatic Word Completion

Itis normal for words (labels, names of variables) to be repeated within a some part of a file; the Source
window helps you typing such word.

When the cursor is at the end of line being composed, upon typing a letter the editor scans the text above
and below the currentline. If a word beginning with the letters you just typed is found, the editor will
"complete" this word for you by writing the remaining part of the word from the current cursor position. To
accept the completion press Alt+Right (Alt+<right arrow>) and the editor will append the remaining part of
the word to the text as if you have typed it yourself. To discard completion, just continue typing and the editor
will accept whatever you type. At any point during typing you may press Alt+Right to accept editor’'s
completion suggestion.

You can press Alt+Right at anytime (not only when the editor offers you to complete a word). In this case
the editor will open a list of words that begin with the typed letters. If the list does not contain an applicable
word, justignore the prompt. The right pane of the Source window, ifitis open, also displays the word
completion list.

To disable automatic word completion, uncheck the Automatic Word Completion boxin the Main menu >
Configure>Editor Options> General tab. When the boxis checked, a number placed in the Scan Range
box defines the number of lines for the editor to scan. The defaultis 24 lines below and 24 lines above the
current line. When this parameter is greater than the total number of lines in the file (for example, 65535),
then program composing will become slower because the whole file will be scanned.

© 2017 Phyton, Inc. Microsystems and Development Tools

170

CPI2-B1 In-System Device Programmer

8.5.7

8.5.8

8.5.8.1

The Quick Watch Function

The Quick Watch function works as follows: if you roll the mouse pointer over a variable name in the
Source window or the Script Source window, a small box containing the value of the variable will be
opened. This boxdisappears upon moving the mouse off the object.

Dialogs

This section describes dialogs used by Script Editor.

The Search for Text Dialog

This dialog sets criteria to search for text in files. This dialog and the Replace Text dialog have a number of
features in common. To specify file names, you can use one or several wildcards. Also, the names may
contain paths. You can search more than one file by using parameters of the Multi-Fle Search area.

Dialog Control
String to Search for

Case Sensitive

Whole Words Only

Regular Expressions

Global
Selected Text
From Cursor

Entire Scope

Perform Multi-Fle
Search

Search All Source
Fles in Project

Include Dependency
Fles

Search Wildcard(s)

Search
Subdirectories

Starting Path

Description
Text to search for.
Unchecked by default. Checking this box makes the search case sensitive.

Unchecked by default. If checked, the editor will search only for whole words:
the string will be found onlyifitis enclosed between punctuation characters
or delimiters (spaces, tabs, commas, quotation marks, etc.).

Unchecked by default. Checking off this box specifies that the search string is
aregular expression.

Search entire file for the string. Enabled by default.
Search for string in the selected block.
Search from the current cursor position.

Search from the beginning or end of the file (depending on the search
direction). Enabled by default.

If checked, the editor will search in all project files (see the notes below). If
unchecked, the search will be performed in current Source window only.

If checked, the editor will search in all the source files included in the project.

If checked, the editor will search in all the source files included in the project
and all files on which the source files depend, whether explicitly or implicitly.

Check this boxto search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to
denote Windows-style long names. Example: *. txt; *. c; c:\ prog\ *. h.
This option and the Search All Source Fles in Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

If checked, the editor will search in subdirectories of all directories specified
by the Search All Source Fles in Project option and by wildcards.

Begin search from the directory specified in this text box. This directory serves
as the common path and is useful when there are several wildcards such as
the following ones:

© 2017 Phyton, Inc. Microsystems and Development Tools

Scripting 171

Notes

1. When you search in the file opened in the Source window, then only the window buffer will be searched,
not the file on disk.

c:\prog\text\source*.txt;c:\prog\text\source*. doc

In this case, make use of wildcards (*. t xt ; *. doc) and common path
(c:\ prog\text\source).

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-File Search
Results dialog remains open.

This dialog sets parameters for search-and-replace operation. This dialog and the Search for Text dialog

8.5.8.2 The Replace Text Dialog

have a number of common parameters, which function in the same way in both dialogs. To specifyfile

names, you can use one or several wildcards. Also, the names may contain paths. You can search in more

than one file at once by using parameters of the Multi-Fle Search area.

Element of dialog

Description

Text to Search for
Replace with

Case Sensitive

Whole Words Only

Regular
Expressions

Prompt at Replace

Global
Selected Text
From Cursor

Entire Scope

Perform Multi-Hle
Search and Replace

Search All Source
Fles in Project

Include Dependency
Hles

Search Wildcard(s)

Specifies the text string to look for (search string).
Specifies the text string to replace the found one.

Unchecked by default. Checking this box specifies that the case of the string
is to be matched.

Unchecked by default. If checked the editor will search only for whole words:
the string will be found onlyifitis enclosed between punctuation or
separation characters (spaces, tabulation symbols, commas, quotation
marks, etc.).

Unchecked by default. Checking of this box specifies that the search string is
aregular expression.

Checked by default. If checked, the editor will always pop up the Confirm
Replace dialog requiring your permission to replace the found text. If
unchecked the editor will automatically replace the searched-and found text.

Search entire file for the string. Enabled by default.
Search in selected block.
Search from current cursor position.

Search from beginning or end of the file (depending on the search direction).
Enabled by default.

Checked by default. If checked, the editor will search in all projectfiles (see
the notes below). If unchecked, the search will be performed in the current
Source window only.

If checked, search in all the source files included in the project.

If checked, search in all the source files included in the project and all files on
which the source files depend, whether explicitly or implicitly.

Check this boxto search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to

© 2017 Phyton, Inc. Microsystems and Development Tools

172

CPI2-B1 In-System Device Programmer

denote Windows-style long names. Example: *. t xt ; *. c; c: \ prog\ *. h.
This option and the Search All Source Fles in Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

Search If checked, search in subdirectories of all the directories, which are specified
Subdirectories by the Search All Source Fles in Project option and by wildcards.
Starting Path Begin search from the directory specified in this text box. This directory serves

as the common path and is useful when there are several wildcards such as
the following ones:

c:\prog\text\source*.txt;c:\prog\text\source*.doc

In this case, make use of wildcards (*. t xt ; *. doc) and common path
(c:\ prog\text\source).

Notes

1. When you search in the file opened in the Source window, then only the window buffer will be searched,
not the file on disk.

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-Fle Search
Results dialog remains open.

8.5.8.3 The Confirm Replace Dialog

This dialog asks permission to replace the found string. You can turn the prompt on/off by checking/
clearing the Prompt at Replace boxin the Replace Text dialog.

Button Function
Yes Replace the found string.
No Cancel this replacement. If the procedure is started with the Change All

button for all occurrences in the search area, then the search-and-
replace process will continue.

Non-Stop From this moment, replace all found strings in this file without prompt.
Cancel Cancel the search-and-replace process.

Skip this Fle Stop searching in this file and switch to the next one.

Replace in All Fles Replace all occurrences in all other files without asking for confirmation.
Move cursor to the If checked, the cursor will be automatically placed on the Yes button on
Yes/No Buttons each inquiry for confirmation.

8.5.8.4 The Multi-File Search Results Dialog

This dialog displays the multi-file search results. To learn about the multi-file search, see the Search for
Text dialog.

The List of Matched Fles shows files in which the search string is found. File name is on the left and its
directoryis on the right. The line with green text beneath this box displays information about the file
selected in the box. "File in memory" means that the file is opened in the Source window. General
information from FAT means the file is on disk, not loaded. The Preview area shows the source line with
the found text string.

© 2017 Phyton, Inc. Microsystems and Development Tools

Scripting 173

The Sort Files by area includes a radio button with four file sorting options. When the Consider Directory
boxis checked, the files are sorted with respect to their directories.

The Edit button opens selected file in a new Source window and places the cursor on the line with the
found string. The found string background is highlighted. To check for other occurrences of the search
string in the file, press Ctrl+R or use the Next Search command of the Edit menu.

The Close button closes the dialog but search results are notlost. To reopen the dialog use the Display
Multi-file Search Results button. You can also use the same command of the Edit menu or press Shift
+F5. The files in the List of Matched Fles box, which are opened in the Source window, will be marked
with asterisks on the left.

8.5.8.5 Search for Regular Expressions

Text editor supports "regular expressions." Regular expressions contain control characters in the search

string:

? Means any one character in this place. Example: if you specify ?ell as the search string,
then "bell," "tell," "cell," etc. will be found.

% Means beginning of line. The characters following ‘%' must begin from column 1.
Example: %Counter - find the word "Counter," which begins at the first column.

$ End of line. The characters preceding the '$' should be at the trailing positions of the line.
Example: Counter$ - find the word "Counter" at the line end.

@ Match the next character literally; '@' lets you specify the control characters as usual
letters. Example: @7 - search for the question mark character.

\XNN The hexadecimal value of the character. Example: \xA7 - find the character with the
hexadecimal code of A7.

+ Indefinite number of repetitions of the previous character. For example, if you specify 1T
+2, then the editor will find the lines containing "1" followed by "2", which are separated
with any number of the letter T.

[c1-c2] Match any character in the interval from c1 to c2. Example: [A-Z] means any letter from Ato
Z

[~c1l-c2] Match any character whose value is outside the interval from c1 to c2. Example: [-A-Z]
means any character except for the uppercase letters.

textljtext2 The "|" character is the logical "OR" and the editor will look for either text1 or text2.

Example: LPT|COM|CON means search for "LPT" or "COM" or "CON."

8.5.8.6 The Set/Retrieve Bookmark Dialogs

Bookmarks help you return to a marked cursor position in a source file.

You can set and retrieve up to 10 local bookmarks. Every local bookmark has an individual numbered
button assigned to it.

To open the Set Bookmark dialog, press Alt+[. To open the Retrieve Bookmark dialog, press Alt+]. To
set/retrieve a bookmark, press its numbered button. The number of the bookmarked line, the bookmark
position in the line (in brackets) and the text of the line are shown at the right of the button.

Local bookmarks are stored in the configuration file and you can work with them in the next session.

© 2017 Phyton, Inc. Microsystems and Development Tools

174

CPI2-B1 In-System Device Programmer

8.5.8.7 The Condensed Mode Setup Dialog

This dialog sets up the parameters for the Condensed mode of the Source window.

Display Lines of Text area has radio buttons for switching between two alternative criteria for condensing
textin the Source window: Containing String and Where Frst Non-blank Column Is:

1. If you check the Containing String radio button, Source window displays only lines with text that matches
the sub-string specified in the text box at the right. Additionally, you can specify case-sensitivity, that whole
words only should be used, and that the sub-string is a regular expression.

2. If you check the Where Frst Non-blank Column Is radio button, the Source window will display the lines
where text begins from the position specified in the Column box. Then you should select one of four
options by checking an appropriate radio button:
Equal to - the first non-space character should be exactlyin the specified column. For example, if you
specify position number 2, the window will display only the lines whose text begins in column 2.

Not Equal to - the first non-space character should be in any column except the position specified here.
For example, if you specify position number 2, the window will not display all the lines beginning in this

column. All other lines will be displayed.

Less than - display onlythe lines in which text begins at a position less than the specified one.
Greater than - display only the lines in which text begins at a position greater than the specified one.

Once setup is complete click OK to switch the Source window into Condensed mode.

8.5.8.8 The Display from Line Number Dialog

9.1

9.11

Use this dialog to display source file in the active Source window starting with specified line. Enter the line
number or select any previous number from the History list. Line numbers start with 1.

Reference

Error Messages

Error Load/ Save File

5005

5004

5003

5043

5078

5151

5007

6899

6900

"Error reading file"

"CRC mismatch, loading terminated"

"Invalid .HEXfile format”

"Address out of range"

"End address should be greater than start address"
"Invalid file format"

"Error writing file"

"Cannot load file '%s": buffer #%u does not exist"

"Cannot load file '%s". sub-level #%u does not exist"

© 2017 Phyton, Inc

. Microsystems and Development Tools

Reference 175

7019 "Unable to open project file: '%s'\n\nAfter start, the programmer attempts to load the mostrecent project.
This error means that the project file does not exist on disk."

9.1.2 Error Addresses

5189 "Device start address (0x%LX) is too large.\nMax. address is 0x%LX."
5190 "Device end address (0x%LX) is too large.\nMax. address is 0x%LX."
5191 "Buffer startaddress is too large"

4024 “"Address %s is out of range (%s...%s)"

4106 “File format does not allow addresses larger than OXFFFFFFFF"
4019 "Address in device: 0x%608X, Address in buffer: 0x%608X\n"

6626 "Buffer startaddress mustbe even”

6627 "Device startaddress must be even”

6628 "Buffer end address must be odd"

8002 "Buffer named '%s' already exists. Please choose another name for the buffer."

9.1.3 Error sizes

6372 "Buffer size is too small for selected split data option"

6495 "Requested buffer size (%lu) is too large"

6441 "Size offile is greater than buffer size:\nAddr = %08IX, length = %u"
6431 "Source block does notfitinto destination sub-level"

6859 "File size is %u bytes thatis less than header size (%u bytes), loading terminated. Probably, you have
specified an invalid file format."

4107 "Cannotallocate %Lu MBytes for the buffer, maximal buffer size is %Lu MBytes"

5192 "Invalid number: '%s™

9.1.4 Error command-line option

5329 "/%s command-line option: Device name required"”
5330 "/%s command-line option: Missing file name"
5331 "/%s command-line option: Missing file format tag"

5332 "/%s command-line option: Invalid file format tag"

© 2017 Phyton, Inc. Microsystems and Development Tools

176

CPI2-B1 In-System Device Programmer

9.15

9.16

9.1.7

5333 "Command line: unable to determine the file format"
5334 "/%s command-line option: Invalid address value"

4104 "Command-line option /l ignored because /A option is not specified"

Error Programming option

6409 "Invalid programming function or menu name:\n'%s"
6410 “Invalid programming option name '%s"

6902 "Invalid '%s' programming option value string: '%s"

6411 "Programming option '%s' cannot be changed"

6412 "Programming option string is too long.\nMax. length is %u."

6854 "Programming option '%s" has type of '%s". Use '%s()' script function to get the value of this option."
5188 "Value %.2fis out of range of %.2f...%.2f for programming option '%s™

6561 "Value %ld is out of range of %ld...%Id for programming option '%s™

4001 "Notall of the saved auto-programming functions were restored. Check the auto-programming functions
list."

Error DLL

6499 "Cannot find bit resource with id 0x%Xin DLL:\n'%s"
6500 "Error handling bit resource with id 0x%Xin DLL:\n'%s™

6502 "Unable to find device '%s' in DLL:\n'%s™

Error USB

4015 "USB device driver error 0x%604Xin '%s'\n\nCannot recover from this error, exiting.\n\nPlease check if
the programmer power is on. If yes, disconnect the USB cable from computer and connect it again, then restart
the %s shell."

4016 "All sites reported USB device driver error.\n\nCannot recover from this error, exiting.\n\nPlease check if
the programmer(s) power is on. If yes, disconnect the USB cable from computer and connectit again, then
restart the %s shell."

4017 "The following site(s):\n\n%s\n\nreported USB device driver error.\n\nThese site(s) will be removed from
the gang programming process.\n\nPlease check if the programmer(s) power is on. If yes, disconnect the USB
cable from computer and connectit again, then restart the %s shell."

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 177

9.1.8 Error programmer hardware

6546 "Source area does not fitinto destination address space"

4005 “"Attemptto read memory beyond buffer end: Addr = %s, len = %u bytes"

6988 "Unable to establish connection with programmer hardware. Please check if:\n\n"

4006 “Attached programmers have duplicate serial number '%s"™

4010 "This programmer with serial number '%s' has been already assigned the site number = %u”

4011 "This gang programmer with serial number '%s' has been already assigned the site numbers = %u..%
u"

4013 "The programmers attached are of different types and cannot be used for gang mode.\n\nExiting."
4014 "ExecFunction() does not work in Gang mode"

4020 "%s reported hardware error 0x%X, error group 0x%X. If problem persists, please contact Phyton."
4000 "The attached programmer with id = %u is not supported"

4102 "Device programming countdown value is zero%s"

9.1.9 Errorinternal
6527 "Internal error\nCORE() for %s %s returned NULL.\nPlease contact your %s distributor."
4025 "Internal Error: Unable to allocate %u bytes for the buffer. Please contact Phyton."
9.1.10 Error configuration

6503 "No programmer configuration files found (prog.ini)"

5325 "The device type '%s %s' stored in configuration "
"or choosen from script file function 'SetDevice()' is not supported by %s.\n"
"The device '%s %s' will be selected.\n"
"Use 'Configure / Select device' to choose the device "
"you need to operate on."

4002 "The '%s' configuration option has been setto an illegal state due to the data read from file. Setting this
option to its default state ('%s")."

9.1.11 Error device

5326 "Device selection error"

4018 "Device '%s'is not supported by the %s. Please choose another device."

© 2017 Phyton, Inc. Microsystems and Development Tools

178

CPI2-B1 In-System Device Programmer

9.1.12

9.1.13

9.1.14

9.2

Error check box

6852 "Error in check box option specification string: '=" expected"”

6853 "Cannot find check box option string '%s™

Error mix

5195 " Number of repetitions cannot be zero"

5206 "The 'View only option is on; editing disabled. Click the 'View' button on toolbar to enable editing."
6501 "No power-on tests defined in:\n'%s"™

6903 "%s'is a sub-menu name, not a function name"

6401 "No more occurences”

6387 "Invalid fill string"

5172 "Checksum = %08IX"

5311 "No more mismatches"

Warning

5338 "Warning: JEDEC file has no file CRC"
5339 "Warning: JEDEC file has invalid CRC"
6933 "Warning: no file end' record in file"

6845 "Attention! The %s %s device must be inserted into the programmer's socket shifted by %d row(s)
relative to the standard position as shown in the Device Information window."

6846 "Attention! Insert device into socket shifted by %d row(s) as shown on the picture."

Expressions

Expressions are mathematical constructs for operations on one or more operands.

When a number is required, you may use an expression; ChipProg-02 will accept the value expression. For
example, when using the Modify command in the Buffer window, you can enter the new value in the form
of a number or arithmetic expression.

Interpreting the expression result
The expression resultis interpreted in accordance with the contextin which itis used.

In the dialog box, when an address is required, the program tries to interpret the expression’s value as the
address. If you enter a variable name, the result of the expression will be the variable’s address but not the
value of the variable.

If the dialog expects a number to be entered, the expression’s value will be interpreted as a number (for
example, the Modify Memory dialog box of the Buffer Dump window). If you enter a variable name there,

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 179

then the result will be the value of the variable, but not its address.

Nonetheless, you can follow the default rules:

If you need to use the variable’s value, where an address is expected, then you can write something like
var + 0. Inthis case, the variable’s value will be used in the expression.

If you need to use the variable address, applythe & (address) operation, thatis, &ar .

9.2.1 Operations

The program supports all arithmetic and logical operations valid for the C language, as well as pointer

and address operations:

Designation
()
[]

&
(type)

(sizeof)

<<

>>

Description
Brackets (higher priority)

Array component selector
Structure component or union selector

Selection of a structure component or a union addressed with a pointer

Logical negation

Bitwise inversion
Bitwise sign change
Returns address
Access byaddress
Explicit type conversion

(returns size of operand, in bytes)

Multiplication

Division

Modulus operator (produces the remainder of an integer division)
Addition

Subtraction

Left shift

Right shift

Less than

Less than or equal to

Greater than

© 2017 Phyton, Inc. Microsystems and Development Tools

180 CPI2-B1 In-System Device Programmer

>= Greater than or equal to
== Equal to

I = Not equal to

Bitwise AND

" Bitwise XOR
| Bitwise OR
&& Logical AND
| Logical OR

= Assignment

The types of operands are converted in accordance with the ANSI standard.
The results of logical operations are O (false) or 1 (true).

Allowed type conversions:
* Operands can be converted to simple types (char, int, ... float).
* Pointers can be converted to simple types (char *, int*, ... float *) and to structures or unions.
* The word "struct" is not necessarily (MyStruct *).

9.2.2 Operands

By default, numbers are treated as decimals. Integers should fitinto 32 bits; floating point numbers should
fitinto the single precision format (32 bits).

The following formats are supported:

1) Decimal integer.
Example: 126889

2) Decimal floating point.
Examples: 365. 678; 2. 12e-9

3) Hexadecimal.

<%CM%> understands numbers in C format and assembly format.
Examples: 0xF6D7; OF6D7H; OXFFFF1111

4) Binary.

Binary numbers must end with 'B'.
Examples:011101B;111111111111111000011B

5) Symbol (ASCII).

Examples:' a';' ab';' $B%8' .' .

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 181

9.2.3

9.3

931

9.3.1.1

Expression Examples

#test#i + #Htest#j << 2
(unsigned char)#test#i + 2
sizeof(##tarray) > 200

main

i +j<<2/:CW0x1200
(unsigned char)i + 2
sizeof(array) > 200
(@==b&&a<=4)||a>"3
sptr -> Memberl -> a[i]

P

*((char *)ptr)

Scripting Reference

Description of Script Language

Script Language Built-in Functions

Script Language Built-in Variables

Alphabetical List of Script Language Built-in Functions and Variables

Scripting Language Description

ChipProg-02 scripting language is similar to C programming language. If you are familiar with C, you can
proceed to the section describing the differences between the scriptlanguage and the C lanquage.

Here are the links to the sections of this scripting language manual.

General Syntax of Script Language
Basic Data Types

Data byte order

Operations and Expressions

Operators
Functions

Descriptions
Directives of the Script File Language Preprocessor

Predefined Symbols in the Script File Compilation

Difference Between Scripting and C Languages

The script files are written in a C-type language and you should not expectitto meet standards. Many
features are not supported because they are not necessary and complication of the language can cause
compiler errors (the script file language compiler is not a simple thing).

- Pointers are not directly supported. But arrays are supported, therefore a pointer can always be built

© 2017 Phyton, Inc. Microsystems and Development Tools

182

CPI2-B1 In-System Device Programmer

from an array and element number. Note that, for example, string operation functions, such as strcpy,
receive a string and a byte number (index) as parameters, which form the pointer. In function declarations,
indexis equal to zero by default.

- Pointers to functions are not supported. If necessary, a table call can always be replaced with the
switch operator.

- Multidimensional arrays are not supported. Ifitis necessary, you can write a couple of functions,
such as:

int GetElement(int array[], int indexl, int index2);
void SetElenent(int array[], int indexl, int index2, int value);

- Structures (and unions) are not supported. In fact, you can always do without structures. Structures
may be required for APl Windows and user DLLs operations, but as a rule only experienced programmers
should do it, such as those who know how to reach structure elements. As a tip, there are functions, such
as memcpy, which receive a void "pointer").

- Enumerated types (enum) are not supported #define.

- Preprocessor macros, such as #define half(x) (x / 2), are not supported. The same operations can
be done with functions.

- Conditional operators such as x =y ==2? 3: 4;, are not supported; the operator "comma" outside
variable declaration is not supported. For example,
int i =0, j =1; is supported, but
for (i =0, j =1; ...) is not supported.

- User functions with a variable amount of parameters are not supported. However, there are many
system functions, such as printf, with a variable number of parameters.

- Declaration of user function parameters such as void array[] is not supported. The system functions
such as memcpy, have such parameters.

- Logical expressions are always fully computed. Itis veryimportant to remember it, as a situation like

char array[10];
if (i <10 & array[i] !'= 0)
array[i] = 1;
will cause an error at the execution stage, if i is greater than 9, because the expression of arrayfi] will be

computed. In a standard compiler such an expression is not computed, because the condition ofi > 10
would cancel any further processing of the expression.

- Constant expressions are always computed during execution. For example, inti =10 * 22 will be
computed not during compilation, but during execution.

- The const keyword is absent.

- Static variables cannot be declared inside functions.

But

- Variables can be declared anywhere, notjustin front of the first executed operator. For example:
void main()
{
d obal Var = 0;
int i =1; /1 will be K as in C++
}

- Nested comments are allowed.

- Expressions like array = "1234" are allowed.

- Default parameter values in declared functions, as in C++, are allowed. For example, void func(char

array[],int index = 0);. Expressions can also serve as default values, for example void func(char array(],
int index =funcl1() + 1);.
- Expressions in global variable initializers are allowed. For example:

float table[] = { sin(0), sin(0.1) };

void main()

{

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 183

}
9.3.1.2 Scripting Language Syntax

Format

Comments

Identifiers

Reserved words

Integer Constants

Long integer constants
Floating-point Constants
Character Constants

String Constants
9.3.1.2.1 Format

Spaces, tabs, line advance and page advance symbols are used as separators. You can use any number
of these separator symbols.

9.3.1.2.2 Comments

Comments begin with the pair of the /* symbols and end with the pair of the */ symbols.
Comments are allowed wherever the spaces are allowed.

The one-line comments (//) are supported. The part of the line following the one-line comment symbol is
ignored.

Note. Only the one-line comments are allowed in the line that contains the #define directive.
Examples:
/1 The one-line coment

/* The multi-line coment */

9.3.1.2.3 Identifiers

Identifiers are used as the names of variables, functions and data types.

The allowable symbols are: digits from 0 to 9, the Latin lower and upper case letters a - z, A- Zand the
underscore symbol ().

Aspecial case is accessing the names built in <% CM%>, for example, a special function register. Such
names are preceded by the dollar mark, for example, $SP, and can be used in the program while not
being declared. Identifiers shall comply with the following rules:

The first symbol can not be a digit.
The upper and lower case letters are discriminated.
An identifier can consist of up to 48 symbols.

Examples:

NAMEL nanel Total 5

© 2017 Phyton, Inc. Microsystems and Development Tools

184 CPI2-B1 In-System Device Programmer

9.3.1.2.4 Reserved words

break extern return
case float short
char for sizeof

continue goto switch

default if unsigned
do int void
else long while

9.3.1.2.5 Integer constants

Decimal constants

Numbers from 0 to 9.
Examples:

12
111
956
1007

Hexadecimal constants

Numbers from 0 to 9; letters a-f or A-F for the values of 10 to 15. The hexadecimal contents shall begin

with Ox or OX.

Examples:
0x12 = 18 (decinal);
0x2f = 47 (decimal);
OxA = 10 (decimal);

Binary constants

Numbers 0 and 1. The binary constants shall end in b or B.

Examples:
010011101b = 0x9D (hexadeci mal) = 157 (decinal);
0101B = 5

Note. If the value exceeds 65535, then it will be presented as the long integer.

9.3.1.2.6 Long integer constants

Latin letter | or L following the constant explicitly defines long integer constants. The explicit definition of a
long constant is useful, for example, for transforming the type of operand into the long type value.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference

Examples:

Long deci mal constant:

Long hexadeci nal constant:

9.3.1.2.7 Floating-point constants

12|
956L
0x12l
OxA3L

12 (decinal)
956 (deci mal)
18 (decinal)
163 (deci nal)

Afloating-point constant consists of the following parts:

- Integer part, which is the sequence of numbers
- Decimal point
- Fractional part, which is the sequence of numbers
- Exponential symbol e or E
- Exponential in the form of an integer constant (can have sign)
Any of the two parts (but not both at the same time) of the following pairs can be omitted:
- Integer or fractional part
- Decimal point or symbol e (E) and the exponential in the form of an integer constant
Examples:
345. = 345 (decimal);
3.14159 = 3.14159 (decinal);
2.1E5 = 210000 (decinal);
.123E3 = 123 (decimal);
4037e-5 = . 04037 (decimal).

9.3.1.2.8 Character constants

185

A character constant may consist of one ASCII code character enclosed within the apostrophes. Also, you
may specify the character by its hexadecimal value of exactly two hexadecimal digits preceded by

characters "x'".
Examples:
‘Aat 7T '$ 'x02' '\x 88"
Special (control) character constants

New l'ine (line feed)
Hori zontal tabul ation
Vertical tabul ation
Backspaci ng

Carriage return

Form f eed

Backsl ash

Apost r ophe

Quot ati on mar ks

Zero character (null)

HL (LF) "\ n'
HT "\t
VT "\
BS "\b'
CR "\r'
FF "\
\ "\
. e
" Py
NUL "\ O

Note. The character constants are considered to be the int-type data.

© 2017 Phyton, Inc. Microsystems and Development Tools

186 CPI2-B1 In-System Device Programmer

9.3.1.2.9 String constants

Astring constantis the quoted sequence of the ASCII code characters: "...".
Astring constantis the quoted character array; its type is charf].
To mark the end of string, the compiler places the null symbol \0' in the end of each string.

If you need to include the quotation mark (") in a string, then enter the backslash (\) before the quotation
mark. Any special character constants preceded by the backslash (\) can be included in the string.

Asymbol can also be presented by its hexadecimal value (exactly two hexadecimal digits) preceded by
the symbols of '\x".

The string constants following in sequence are interpreted as one string constant. This is useful for the
advance of the constant part to the nextline, for example:

printf("Line 1\n"
"Line 2");

Examples:

"This is the character string"
" A
" 1234567890\ x33"

9.3.1.3 Basic Data Types

The script file compiler supports the following data types:

signed char 8
unsigned char 8
signed short 16 -32768...+32767
unsigned short 16 0...65535

1 -128..+127
1
2
2
signed int 16 2 -32768..+32767
2
4
4

0..255

unsigned int 16 0...65535

signed long 32 -2147483648...2147483647

unsigned long 32 0..4294967295

float 32 4 +/-1.17549435E-38...4+/-3.40282347E+38

The "pure" int type coincides with the signed int type.
The long type is equivalent to the signed long.

The short type is equivalent to the signed short.

The char type is equivalent to the signed char.

9.3.1.4 Data byte order

Data byte order

All many-byte data is stored in the memory in the "little engine" format, that is, the low byte is
allocated at the low address and the high byte is allocated at the high address in accordance with
the 80x86 processor architecture. For experienced programmers, it is useful to know this, if they
want to use Windows API and DLL functions access

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 187

9.3.1.5 Operations and Expressions

Expressions
An expression consists of one or more operands and operation symbols.
Examples:

at+
b=10
X=y*z)/lw
Note. Any expression ending with semi is the operator.
Operand Metadesignation
Arithmetic Operations
Assignment Operations
Relation Operations
Logical Operations
Bit Operations
Array Operations
Other Operations
Operation Execution Priorities and Order
Operand Execution Order

Arithmetic Conversions in Expressions
9.3.1.5.1 Operand Metadesignation

Some operations require specific operand types. The type of operand is indicated by one of the
following letters:

e - any expression
Vv - any expression referring to the variable, to which a value

can be assigned. Such expressions are called the address ones.

The prefix indicates the type of expression. For example, ie indicates any integer expression. All
the possible prefixes are as follows:

i
a - the arithmetic expression (the integer number, symbol or
floating-point number)

f - the function
Note.

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

188 CPI2-B1 In-System Device Programmer

9.3.1.5.2 Arithmetic Operations

+

%

Usage: ael + ae2
Sum of ael and ae2.
Example:

i=j+2

Sets i equal to j plus 2.
Usage: ael - ae2
Subtraction of ael and ae2.
Example:

i=j-3;

Usage: -ae

Example:

Usage: ael * ae2
Product of ael and ae2.
Example:

z=3*%X

Quotient of ael and ae2.
Example:
i=j/5

Usage: ael % ae?

Remainder (modulus division) of the division of ael by ae2.

Example:

minutes = time % 60;

Note. Execution of the ++ and -- operations produces side effects; the value of variable used as an
operand changes.

++ Usage: iv++

Increasing iv by 1. The value of this expression is the value of ie

before increasing.
Example:

j: i++;

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 189

++ Usage: ++iv
Increasing iv by 1. The value of this expression is the value of ie
after increasing.
Example:
i = ++4j;
-- Usage: iv-
Decreasing ivby 1. The value of this expression is the value of ie
before decreasing.
Example:
j=i-
-- Usage: --iv
Decreasing ivby 1. The value of this expression is the value of ie
after decreasing.

Example:

i = -

9.3.1.5.3 Assignment Operations

Note. The value of expression containing the assignment operation is the value of the left operand
after the assignment.

= Usage:v=-¢e
The value of e is assigned to variable v.
Example:
X=Yy;

Note. The following operations combine arithmetic or bit-by-bit operations with the assignment
operation.

+= Usage: av += ae
Increasing av by ae.
Example:

y+=2

-= Usage: av-= ae
Decreasing av by ae.

Example:

© 2017 Phyton, Inc. Microsystems and Development Tools

190 CPI2-B1 In-System Device Programmer

X-=3;
*= Usage: av *= ae
Multiplication of av by ae.
Example:
timesx *= x;
/= Usage: av/= ae
Division of av by ae.
Example:
X I=2;
%= Usage: iv%-= ie
The value of ivin modulus ie.
Example:
X %= 10,
>>= Usage: iv>>= je
The right ie bit shift of the iv binary form.
Example:
X >>= 4;
Usage: iv<<=ie
The left ie bit shift of the iv binary form.
Example:
X <<=1;
&= Usage: iv&=ie
The bit-by-bit AND operation of the ivand ie binary forms.
Example:
remitems &= mask;
= Usage: iv=ie
The bit-by-bit exclusive OR operation of the ivand ie binary forms.
Example:
control "= seton;
|= Usage: iv|=ie
The bit-by-bit OR operation of the ivand ie binary forms.
Example:

additems |= mask;

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference

9.3.1.5.4 Relation

Note. Logical False is presented by integral zero, and logical True is presented by any integer

Operations

other than zero.

The expressions that contain the relation operations or logical operations have the values of 0

(False) or 1 (True).

<

<=

Usage: iel == ie2

True, ifiel is equal to ie2; False otherwise.

Example:
if i == 0) break;
Usage: iel = ie2
True, if iel is not equal to ie2.
Example:
while (i = 0)
i = func;
Usage: ael < ae2
True, if ael is less than ae2.
Example:
if (x < 0)
printf ("negative");
Usage: ael <= ae2

True, if ael is less than or equal to ae2.

Usage: ael > ae?

>=

True, if ael is larger than ae2.
Example:
if (x > 0)
printf ("positive");
Usage: ael >= ae2

True, if ael is larger than or equal to ae2.

9.3.1.5.5 Logical Operations

Usage: lae

True, if ae or pe is false.

191

© 2017 Phyton, Inc. Microsystems and Development Tools

192 CPI2-B1 In-System Device Programmer

Example:
if (lgood)
printf ("not good");
|| Usage: el || e2

checked. The value of e2 will be checked only, if el is False. The expression will be
True, if el or e2 is True.
Example:
if(x < A || x > B) printf
("out of range");
&&

Logical AND operation of el and e2. At first, the value of el
is checked. The value of e2 will be checked only, if el is True.
The expression will be True, if el and e2 are True.
Example:
if@!=0&& b>7)
n++:

9.3.1.5.6 Array Operations

[Usage: nameJie]
The expression value is the number equal to the value of the element

number ie of the name array. The array elements are numbered beginning from 0.
Example:
arnameli] = 3;

To assign 3 to the array element i.
Note the first element as described by the expression of

arname][0].

9.3.1.5.7 Bit Operations

~ Usage: ~ie
One's complement of the value ie. The expression value contains ones in
all those bits, in which ie contains 0, and contains 0 in all

those bits, in which ie contains ones.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 193

Example:
opposite = ~mask;
>> Usage: iel >> ie2
The right ie2 shift of the iel binary form.
The shift may be arithmetic (that is, the bits cleared from the left
assume the value of the sign bit) for the signed numbers and
logical for the unsigned numbers (the bits cleared from the left are
filled with zeroes).
Example:
X =X>>3
<< Usage: iel << ie2
The left ie2 bit left of the ie2 binary form.
The bits cleared from the right are filled with zeroes.
Example:
fourx = x << 2;
& Usage: iel & ie2
The bit-wise AND operation of the iel and ie2 binary forms. The expression
value assumes 1 in all those bits, in which both iel and ie2 contain

1, and assumes 0 in all other bits.

flag = ((x & mask) = 0);
| Usage: iel |ie2
The bit-wise OR operation of the iel and ie2 binary forms. The expression
value assumes 1 in all those bits, in which either iel or ie2 contain
1, and assumes 0 in all other bits.
Example:
attrsum = attrl | attr2;
N Usage: iel Nie2
The bit-wise exclusive OR operation of the iel and ie2 binary forms.
The expression value contains 1 in all those bits, in which iel and
ie2 contain different binary values, and the expression value
contains 0 in all other bits.

Example:

© 2017 Phyton, Inc. Microsystems and Development Tools

194 CPI2-B1 In-System Device Programmer

diffbits = x *y;

9.3.1.5.8 Other Operations

sizeof Usage: sizeof(e)
The number of bytes required for allocation of e-type data. If e
describes the array, then e means the whole array, and not only the
address of the first element, as in other operations.
(type) Usage: (type)e
The value of e is conwerted into the data type.
Example:
x = (float)n / 3;
The integer value of the variable n is transformed into

the floating-point number before dividing by 3.
() Usage: fe(el, e2,..., eN)

The fe function is called with the arguments €1, e2,..., eN.

order from

Example:

X = sart(y);

9.3.1.5.9 Operation Execution Priorities and Order

Priorities are the same for each group of operations listed in the table below. The higher the priority
of operation, the higher is its place in the table.

If there are no brackets and the operations are related to the same group, then the order of
execution determines the operation and operand grouping (from left to right or from right to left).

Examples

The expression of a * b / ¢ is equivalent to the expression of (a * b) / c,
as the operations are executed from left to right.

The expression of a = b = ¢ is equivalent to the expression of a = (b = ¢),

as the operation is executed from right to left.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 195

[Array element selection

I Logical negation From right to left (RL)
~ Bit-by-bit negation

- Sign change

++ Increasing by one

-- Decreasing by one

(type) Type conversion

sizeof Determining of size in bytes

* Multiplication LR
/ Didsion

% Modulus division

+ Addition LR

- Subtraction

<< Left shift LR
Right shift
< Less than LR

<= Less than or equal to

> Larger than

>= Larger than or equal to

== Equal to LR

= Not equal to

& Bit-by-bit AND operation LR
A Bit-by-bit exclusive OR operation LR
| Bit-by-bit OR operation LR
&& Logical AND operation LR
|| Logical OR operation LR

*= [= Op= += -=

<<= >>= &= = |=

9.3.1.5.10 Operand Execution Order

The operands are normally executed from left to right.

© 2017 Phyton, Inc. Microsystems and Development Tools

196 CPI2-B1 In-System Device Programmer

. If you assign a value to a variable in any expression (including the function call), do not use this
variable again in the same expression.

Example:
Y = (x = 5)+ (++x);

9.3.1.5.11 Arithmetic Conversions in Expressions

First, every char-type operand is converted into the int-type value, and the unsigned char-type
operand is converted into the unsigned int-type value.

Then, if one of the operands is of the float type, then the other will be converted into the float-type
value and the result will be of the float type.

Otherwise, if one of the operands is of the unsigned long type, then the other will be converted into
the unsigned long-type value and the result will be of the same type.

Otherwise, if one of the operands is of the long type, then the other will be converted into the long-
type value and the result will be of the same type.

Otherwise, if one of the operands is of the long type, and the other is of the unsigned int type, then
both operands will be converted into the unsigned long-type value and the result will be of the same

type.

Otherwise, if one of the operands is of the unsigned type, then the other will be converted into the
unsigned-type value and the result will be of the same type.

Otherwise, both operands should be of int type and the result will be of the same type.

9.3.1.6 Operators

Format and nesting

Operator label

Composite operator

Operator-expression

Operator Break

Operator Continue

Operator Return
Operator Goto

Conditional Operator If-Else

Operator Switch

Cycle Operator While

Cycle Operator Do-While

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 197

Cycle Operator For

9.3.1.6.1 Format and nesting

Format and nesting

Format. One operand can occupy one or more lines. Two or more operands can be located in one
line.

Nesting. The execution control operators (if, if-else, switch, while, do-while and for) can be nested
in each other.

9.3.1.6.2 Operator label

Operator label

The label can be placed before any operator, which makes it possible to go to this operator with the
help of the "goto" operator.

A label consists of an identifier followed by the colon (). The definition domain of the label is the
specified function.

Example:

next: x = 3;

9.3.1.6.3 Composite operator

Composite operator

The composite operator (block) consists of one or more operators of any type enclosed in the
brackets ({}).

There shall be no semicolon (;) behind the closing bracket.

Example:
{
X =1,
y=2
Z=3
}

9.3.1.6.4 Operator-expression

Any expression, which ends with the semicolon (;), is the operator. Refer to the following examples of
operators-expressions.

Assi gnment oper at or

© 2017 Phyton, Inc. Microsystems and Development Tools

198 CPI2-B1 In-System Device Programmer

Identifier = expression;

Example:
X = 3;
Function call operator
Functi on_name (argunentl,..., argunentN);
Example:

fclose(file);

Enpty operat or
Consi sts only of semcolon (;).
It is used to identify the enpty body of the control operator.

9.3.1.6.5 Operator Break

Syntax:
break;

Stops execution of the nearest nested external operator switch, while, do, or for. Control is
transferred to the operator following the operator being completed. One purpose of this operator is
to complete the cycle, when specific value is assigned to the variable.

Example:
for 1=0;i<n;i++)
if (a[i] == 0)

break;

9.3.1.6.6 Operator Continue

Syntax:
continue;

Transfers control to the beginning of the nearest external operator of the cycle while, do, or for,
which starts the next iteration. This effects produced by this operator are opposite to those of the
break operator.

Example:
for i=0;i<n;i++)
{
if (afi] == 0) continue;

a[i] = bfi];

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 199

9.3.1.6.7 Operator Return

Syntax:

return;

Stops execution of the current function and returns control to the function that called it.
expression return;

Stops execution of the current function and returns control to the program that called it, together
with the expression value.

Example:

return X +vy;

9.3.1.6.8 Operator Goto

Syntax:
goto | abel;

Control is unconditionally transferred to the operator with the label "label". Itis used to exit from the
nested control operators. The scope of the label is limited within the current function.

Example:

got o next;

9.3.1.6.9 Conditional Operator If-Else

Syntax:
if (expression)
operator

If the expression is True, then the operator will be executed. If the expression is False, then
nothing will happen.

Example:

if (@ == x) temp = 3;

if (expression)
operatorl

else

operator2

If the expression is True, then operatorl will be executed and control will be transferred to the
operator following operator2 (which means that operator2 will not be executed).

If the expression is False, then operator2 will be executed.

The "else" part of the operator can be omitted. That is why ambiguity may arise in the nested
operators with omitted "else" part. In this case, else is related to the nearest preceding operator in
the same block that does not have the "else" part.

Examples:

© 2017 Phyton, Inc. Microsystems and Development Tools

200 CPI2-B1 In-System Device Programmer

1) The "else" part relates to the second if operator:

iftx > 1)
if (y == 2)
z=5;
else
zZ=6;
2) The "else" relates to the first if operator:
if (x> 1)
{
if(y==2)z=25;
}
else z = 6;

3) The nested if operators:
if(x=="2a)y=1,
else

if (x == 'b)

else
if(x=="c)y =4
else

printf("ERROR");

9.3.1.6.10 Cycle Operator While

Syntax:

while (expression)

operator

If the expression is True, then the operator will be executed until the expression becomes False.
If the expression is False, then control is passed to the next operator.

Note. The value of the expression is determined before executing the operator. Therefore, if the
expression is False from the very beginning, then the operator will not be executed at all.

Example:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 201

while (k < n)
{
y =X
k++;

}

9.3.1.6.11 Cycle Operator Do-While

Syntax:

do
oper at or
whi l e (expression);

If the expression is True, then the operator will be executed and the expression value will be
calculated. This will be repeated until the expression becomes False.

If the expression is False, then control is passed to the next operator.

Note. The expression value is determined after the operator is executed. Therefore, the operator is
executed at least once.

The do-while operator checks the condition in the end of the cycle.
The while operator checks the condition in the beginning of the cycle.
Example:
X =1,
do

printf(%d\n", pow(x, 2));

while (++x <= 7);

9.3.1.6.12 Cycle Operator For

Syntax:
for (expressionl; expression2; expression3)
operator

Expressionl describes the cycle initialization. Expression2 is checking the condition of the cycle
completion. If it is True, then:

the "for" operator of the cycle body will be executed;
expression3 will be executed.
Everything will be repeated until expression2 becomes False.

If it is False, then the cycle will be finished and control will be passed to the next operator.

Expression3 is calculated after each iteration.

© 2017 Phyton, Inc. Microsystems and Development Tools

202 CPI2-B1 In-System Device Programmer

The "for" operator is equivalent to the following operator sequence:
expressionl;
while (expression2)
{
operator

expressions3;

Example:
for(x = 1; X <= 7; x++)
printf("%d\n", pow(x, 2));

In any of the three expressions, or in all three expressions of the operator, "for" may be absent, but
the semicolons (;) separating them cannot be omitted.

If expression2 is omitted, then it will be considered True. The "for" operator (;;) is the endless cycle
equivalent to the While(1) operator.

9.3.1.7 Functions

Function Definition

Function Call

Function Main

9.3.1.7.1 Function Definition

Functions are defined by description of the type of result, formal parameters and composite operator
(block) that describe the actions carried out by the function.

Example:
int the type of result
func(function nane
long a, char str[] list of parameters, which describes the names and
types
)
{ conposi te operat or
11
return O; returned val ue
}

The return operator can not return any value or return the value of the expression included in this operator.
The function, which does notreturn a value, shall be described as having type void.
One or several last parameters on the list can assume the default values. Examples:

int func(int x, int y = 0);
int fi(char s[], char s1[] = "null", int x = func(0));

voi d errnesg(char s[])

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 203

printf{"***Error: %", s);
/1 the Return operator (explicit) is not required

9.3.1.7.2 Function Call

Syntax of a function call is as follows:
function_name(el, e2, ..., eN

Arguments that are not arrays (actual parameters) are transferred by value, thatis, each expression el, ...,
eN is calculated and the parameter is transferred to the function. Arrays are transferred "by pointer”, as
shown in the example:

voi d func(char s[])

{
s[0] = 2;

}

voi d main()

{
char array[3];
func(array);

}

The func function modifies the value of elementO of the "array" array declared in the main function, and not
of its duplicate.

Pointers to functions (like all other pointers) are not supported.

9.3.1.7.3 The main Function

The script file operation commonly starts with the main function. The main function shall be declared as
follows:

voi d main()

{
}

Note. The main function should not necessarily be included in a scriptfile. If there is no main function, then
the script file will be loaded into the memory and stay there with its global functions and data available to
other script files.

9.3.1.8 Descriptions
Descriptions are used for variable definitions and to declare types of variable and functions defined
elsewhere. Descriptions are also used for defining new data types on the basis of existing data types.
A description can be an operator, if an initialized variable or array are described.

Basic Types
Arrays

Local Variable Definition

© 2017 Phyton, Inc. Microsystems and Development Tools

204 CPI2-B1 In-System Device Programmer

Global Variable Definition

9.3.1.8.1 Basic Types

Examples:
char c;
int x = 0;
The basic types are:

char - character (one byte);

short - short integer (word, 16 bit);

int - integer (word, 16 bit);

unsigned - non-negative integer (of the same size as integer);
long - long integer (word or double word);

float - floating-point number (single precision);

wid - no value (used to neutralize the value

returned by function)
The Short type is equivalent to the Int type and was introduced for generality.

Also, see Basic Data

9.3.1.8.2 Arrays

Only one-dimensional arrays are supported.
Example:
int a[50];

Variable a is the array consisting of 50 integer numbers.

9.3.1.8.3 Local Variable Definition

The automatic variable is temporary, because it loses its value upon the exit from the block. The
domain of the variable is the block, where it is defined. Variables defined inside the block take
precedence over the variables defined in the enclosing blocks. Example:

woid func(char c)

{

inti=0;

if (c =='0)

{
chari=8;

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 205

i++;

i++;
}
The local variable can be described everywhere within the function, as in C++.
Values of non-initialized local variables are undefined.

The function formal parameters are processed the same way as local variables.

Static variables inside the function are not implemented.

9.3.1.8.4 Global Variable Definition

Global variables
Example:
int Global_flag;

Global variables are defined on the same level as functions, that is, they are not local in any block.
They are initialized with 0, unless other initial value is explicitly defined. The scope is all script files
currently being executed. Global variables should be described in all the script files that can
access them.

Static variables
Example:
static int File_flag;

Constant. The scope is the script file, in which the variable is defined. The static variables shall be
described before they are used in the file for the first time.

Variable Initialization

External Object Description

9.3.1.8.4.1 Variable Initialization

Any variable, except for formal parameters, can be initialized upon definition.
Any permanent variable is initialized with 0, unless other initial value is explicitly defined.
Any expression can be used as the initial value.
Basic types
Examples:
inti=1+j;
float x = sin(_PI/ 2);
Arrays

© 2017 Phyton, Inc. Microsystems and Development Tools

206 CPI2-B1 In-System Device Programmer

Examples:
int af] = {1,4,9,16,25,36}
chars[20] ={'a, b, 8}
The values of array elements are listed in curly brackets.
If an array size is defined, then the values, which are not explicitly defined, will be equal to 0.
If an array size is omitted, then it will be determined by the amount of initial values.
Strings
Example:
char s[] = "hello";

This description is equivalent to the description of
char s[] = {h','"e",l,'I''0',\0%;

9.3.1.8.4.2 External Object Description

Any type of external objects (for example, variables or functions) not defined explicitly in another
script file, should be described explicitly.

Use the keyword Extern hen describing an external object.
Examples:

extern int Global_var;
extern char *Name;

extern int func();
The length of external one-dimensional array can be omitted.
Example:

extern float Num_array([];

Because all functions are defined on the external level, the adjective extern is not needed to
describe a function inside the block and you can omit it.

9.3.1.9 Directives of the Script Language Preprocessor

If you use the # symbol as the first symbol in the program line, this line is the preprocessor
(microprocessor) command line.

The preprocessor command line ends with the line advance symbol.
Identifier Change (#define)

Inclusion of Files (#include)

Conditional

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 207

9.3.1.9.1 Identifier Change (#define)

Syntax:
#define identifier line
Example:
#define Count 100
Changes each occurrence of the Count identifier in the program text to 100.
#undef identifier
Example:
#undef Count

Cancels any previous definition for the Count identifier.

9.3.1.9.2 Inclusion of Files (#include)

Note. You can put the #include command line everywhere in the program, but normally, all
inclusions are located in the beginning of the source file text.

Syntax:
#include <file_name>
Example:

#include <system.h>

The preprocessor changes this line to the contents of the system.h file. The angle brackets
indicate that the system.h file will be taken from the standard catalog. The directory, where CPI2-
B1 is installed, and the list of directories specified in the "include-file directory" field in the Script
Files dialog, are automatically used as the standard directory. If the file is not found in any of the
standard directories, then the current directory will be checked.

#include "file_name"
Example:
#include "defs.h"

This structure operates the same way as the #include <system.h>, except that the compiler
searches the current directory first.

9.3.1.9.3 Conditional Compilation

Preprocessor command lines are used for conditional compilation of various parts of the source
text depending on external conditions.

Syntax:
#ifdef identifier

© 2017 Phyton, Inc. Microsystems and Development Tools

208 CPI2-B1 In-System Device Programmer

Example:
#ifdef Debug

True, if the Debug identifier was defined earlier by the #define directive. Identifiers can also be
defined in the Defines text box in the Script Files dialog.

Syntax:
#ifndef identifier
Example:

#ifndef Debug

Syntax:

#el se
#endi f

If all previous checks of #if, #ifdef, or #ifndef show the True value, then the lines from #else to #endif
will be ignored during compilation.

If those checks show the False value, then the lines from the check to #else (and if #else is
missing, then from the check to #endif) will be ignored.

The #endif command ends the conditional compilation.
Example:
#ifdef DEBUG printf("Location: x = %d", x); #endif

9.3.1.10 Predefined Symbolsin the Script File Compilation

The compiler automatically defines these symbols, as if they were defined by the #define directive.
Symbols that define the microcontroller family

One of the following symbols is defined:

__ARM - for the ARM debuggers

- for the MCS-51 debuggers;

_ MCS_96 - for the MCS-96 debuggers;
__PIC - for the Microchip PIC debuggers.

9.3.2 Built-in Functions by Group

The script file system provides you with a large set of built-in functions intended for work with lines, files, for
mathematical calculations, and access to the processor resources. The system.h file contains
descriptions of these built-in functions. You should include the system.h file in the script file source text
with the #include directive:

#i ncl ude <system h>

You can use these built-in functions in the same way you use any function that you have defined.

Buffer access functions

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 209

Device programming control functions
Mathematical Functions

String Operation Functions

Character Operation Functions

Functions for File and Directory Operation
Stream File Functions

Formatted Input-Output Functions

Script File Manipulation Functions

Text Editor Functions

Control Functions

Windows Operation Functions and Other System Functions
Graphical Output Functions

1/O Stream Window Operation Functions

Event Wait Functions
Other Various Functions

Note. To get help on a function or variable, while editing the script source with the <%CM%> built-in editor,
point that function/variable name with the cursor and hit Alt+FL1.

9.3.2.1 Buffer access functions

LoadProgram

ReloadProgram
SaveData

SetDevice
MinAddr
MaxAddr

GetByte
GetWord

GetDword

SetByte
SetWord

SetDword

GetMemory

SetMemory
CheckSum

9.3.2.1.1 CheckSum

unsigned long CheckSum(unsigned long start_addr, unsigned long end_addr, int addr_space);
Description

Calculates checksum for data in the addr_space memory{addr_sp} starting at start_addr and ending
at end_addr. Checksum is calculated by simple addition of byte values.

Return Value
32-bit checksum.

Example

© 2017 Phyton, Inc. Microsystems and Development Tools

210 CPI2-B1 In-System Device Programmer

printf("%08IX', CheckSum(0, Ox1FFF, SubLewel(1, 0)));

9.3.2.1.2 GetByte

unsigned int GetByte(unsigned long addr, int addr_space);
Description

To read a byte from a specified address space{addr_sp} (parameter addr_space) at a specified
address.

Returned value
Read byte or word.
Example

printf("%02X', GetByte(SubLewel(0, 0), Ox1F));

9.3.2.1.3 GetDword

unsigned long GetDword(unsigned long addr, int addr_space);
Description

To read a double word (32 bits) from a specified memory area{addr_sp} (parameter addr_space) at a
specified address.

Returned value
Read double word.
Example

printf("%08IX', GetDword(0, 0x1F));

9.3.2.1.4 GetMemory

woid GetMemory(woid dest[], int n, unsigned long addr, int addr_space);
Description

To read n-byte memory block from a specified memory area{addr_sp} (parameter addr_space) at a
specified address to the array dest.

Example

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 211

char array[20]; GetMemory(array, sizeof(array), 0x20, SubLewel(0, 0));

9.3.2.1.5 GetWord

unsigned int GetWord(unsigned long addr, int addr_space);
Description

To read a word (16 bits) from a specified memory area{addr_sp} (parameter addr_space) at a
specified address.

Returned address
Read word.
Example

printf("%04X', GetWord(0, Ox1F));

9.3.2.1.6 LoadProgram

wid LoadProgram(unsigned char file_name[], int format, int addr_space=AS_CODE, unsigned long
start_addr=0);

Description
To download a program in the buffer{buffer} memory.
Parameters:

file_name - Name of the loaded file.

format - Format of the loaded file. Character constants with the
prefix F_ declared in the mprog.h header file
are provided for this parameter. To understand this
better, open the Load Programm Dialog.
and go through format names.

addr_space - address space{addr_sp} where the data is downloaded
(0 by default).

start_addr - Load address. This parameter is used only for loading
a file that is a binary memory image.

Example

LoadProgram("C:\\PROGWTEST.HEX', F_HEX, SubLewel(1, 0));

9.3.2.1.7 MaxAddr

© 2017 Phyton, Inc. Microsystems and Development Tools

212 CPI2-B1 In-System Device Programmer

unsigned long MaxAddr(int addr_space);

Description

Returns the address of the address space{addr_sp} upper boundary.

9.3.2.1.8 MinAddr

unsigned long MinAddr(int addr_space);

Description

Returns the address of the address space{addr_sp} lower boundary.

9.3.2.1.9 ReloadProgram

woid ReloadProgram();

Description

To reload the file that was the last to be loaded to the buffer. This is equivalent to "Re-Load" in the
File menu.

9.3.2.1.10 SaveData

wid SaveData(unsigned char file_name[], int format, int addr_space, unsigned long start_addr,
unsigned long end_addr);

Description

To save memory area from buffer{buffer} in the file.
Parameters:

file_name - Name of unloaded file.
format - Format of unloaded file. Character constants with
the prefix F_ declared in the mprog.h header file
are provided for this parameter. To understand this better,
open the Sawve Program Dialog and go through
format names.
addr_space - address space{addr_sp} where data is unloaded from.
start_addr - Initial address of unloaded area.
end_addr - Final address of unloaded area (inclusive).

Example

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 213

SawveData("C:\PROGWTEST.HEX', F_HEX, SubLevel(0, 0), 0, 0x3FFF);

9.3.2.1.11 SetByte

woid SetByte(unsigned long addr, int addr_space, unsigned int value);
Description

To write value (byte) to a specified memory area{addr_sp} (parameter addr_space) at a specified
address.

Description

SetByte(0x2000, SubLewel(0, 1), OXFF);

9.3.2.1.12 SetDevice

int SetDevice(char manufacturer[], char name[]);
Description

Set device type. The manufacturer parameter is the device manufacturer name, name is the device
name.

Returned value
TRUE if the device is successfully selected, FALSE if it is not found.
Example

SetDevice("Altera", "EP910");

9.3.2.1.13 SetDword

woid SetDword(unsigned long addr, int addr_space, unsigned long value);
Description

To write a double word (32 bits) to a specified memory area{addr_sp} (parameter addr_space) at a
specified address.

Example

SetDword(0x2000, 0, 0x12345678);

© 2017 Phyton, Inc. Microsystems and Development Tools

214 CPI2-B1 In-System Device Programmer

9.3.2.1.14 SetMemory

woid SetMemory(wid src[], int n, unsigned long addr, int addr_space);
Description

To write n-byte memory block to a specified memory area{addr_sp} (parameter addr_space) at a
specified address from the array src.

Example

SetMemory("12345678", 8, 0x20, 0);

9.3.2.1.15 SetWord

woid SetWord(unsigned long addr, int addr_space, unsigned int value);

Description

To write a word (16 bits) to a specified memory area{addr_sp} (parameter addr_space) at a specified
address.

Example

SetWord(0x2000, 0, OXFFFF);

9.3.2.2 Device programming control functions and variables

Here is the list of the functions that control programming scripts (alphabetic order):

AllProgOptionsDefault
ExecFunction
GetProgOptionBits
GetProgOptionFloat
GetProgOptionList
GetProgOptionLong
GetProgOptionString
mprintf
ProgOptionDefault
SetProgOption

Here is the list of the variables that controls programming operations in scripts (alphabetic order):

BlankCheck
BufferStartAddr
ChipEndAddr
ChipStartAddr

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 215

DialogOnError
InsertTest

LastErrorMessage

ReverseBytesOrder
VerifyAfterProgram

VerifyAfterRead

9.3.2.2.1 Function AllProgOptionsDefault

void AllProgOptionsDefault();

Description:

Set all the programming options to their default values.

9.3.2.2.2 Function ExecFunction

int ExecFunction(char func_name([], int buffer=0, int repetitions=1);
Description:

Perform the specified action (function) on device - programming, blank check, etc. The list of
available functions is displayed in the upper left corner of the Program window.

Parameters:

func_name - function name, for example "Blank Check". If you need to execute a function located
in the pop-up menu, you should precede the function name with the menu name and separate them
with "N sign, e.g. "Data Memory”~Program".

buffer - the buffer number.

repetitions - number of repetitions of the function.

Returned value:

For the value returned by ExecFunction, the header file mprog.h contains two constants:
EF_OK - function was completed successfully

EF_ERROR - there was an error while executing function. In this case, the error description is copied
into the built-in variable LastErrorMessage.

Example:

if (ExecFunction("Blank Check") != EF_OK)
printf("Error in blank check: %s", LastErrorMessage);

© 2017 Phyton, Inc. Microsystems and Development Tools

216 CPI2-B1 In-System Device Programmer

See also DialogOnError.

9.3.2.2.3 Function GangExecute

int GangExecute(int site, int buffer=0);

Description:

In the gang mode, launch the Auto Programming command on the socket, the number of which is
specified by the site parameter (the first socket in the gang programmer has the number 0). The buffer's
number is specified by the parameter buffer. The default buffer number is 0.

A successful launch of the GangExecute() function returns 1; if the function fails it returns O.
Regardless of the Auto Programming result, immediately after launching the GangExecute() function,
full control returns to the active script. In order to check the Auto Programming command completion,
use the script functions GangStatus() or GangWaitComplete().

9.3.2.2.4 Function GangGetError

int GangGetError(int site, char g[]);

Description:

In the gang mode get an error message about the failure of the socket, the number of which is specified
by the parameter site (the first socket in the gang programmer has the number 0). The error message (a
string) dumps to the array with the pointer s. If no single error has occurred during the programming
session the first byte in the error string will be 0 (zero).

9.3.2.2.5 Function GangStatus

int GangStatus(int site);

Description:

In the gang mode get the status of the operation on the socket, the number of which is specified by the
site parameter (the first socket in the gang programmer has the number 0). The function call returns the
status string, two bits of which define the operation statuses:

If the bit GS_EXECUTING =1 this indicates that Auto Programming is still in process;
If the bit GS_FAILED =1 this indicates an Auto Programming failure.

9.3.2.2.6 Function GangWaitComplete

void GangWaitComplete(int site);

Description:

In the gang mode, wait for completion of the Auto Programming operation on the socket, the number of
which is specified by the site parameter (the first socket in the gang programmer has the number 0).
Regardless of the operation result, a call of this function returns control to the script only upon
completion of the Auto Programming operation.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 217

9.3.2.2.7 Function GetBadDeviceCount

unsigned long GetBadDeviceCount(int site=0);

Description:

In the gang mode get the current number of devices that could not be successfully programmed or did
not pass \erification in the socket, the number of which is specified in the site parameter (the first
socket in the gang programmer has the number 0). Each socket in the gang programmer has a virtual
counter "Bad" that increments the variable after each programming cycle failure. The "Bad" counter
display is accessible in the Statistics tab in the Program Manager window.

9.3.2.2.8 Function GetGoodDeviceCount

unsigned long GetGoodDeviceCount(int site=0);
Description:

In the gang mode, get the current number of the devices successfully programmed in the socket, the
number of which is specified by the site parameter (the first socket in the gang programmer has the
number 0). Each socket in the gang programmer has a virtual counter "Good" that increments the
variable after each successful device programming cycle. The "Good" counter display is accessible in
the Statistics tab in the Program Manager window.

9.3.2.2.9 Function GetProgOptionBits

unsigned long GetProgOptionBits(char option_namel[]);

Description:

Returns current value of the option_name programming option. The option must be of type Bits' - a
list of options; each of them can be checked or unchecked. Example: "Sectors" option of the Fujitsu

MBM29LVO08BA device.
9.3.2.2.10 Function GetProgOptionFloat
float GetProgOptionFloat(char option_namel(]);
Description:
Returns current value of the option_name programming option. The option must be of type ‘Long' - a
floating-point number. Example: "Vcc" option of the Microchip PIC16F628A device.
9.3.2.2.11 Function GetProgOptionList
unsigned int GetProgOptionList(char option_name[]);

Description:

Returns current value of the option_name programming option. The option must be of type 'List' - a
menu-like list of strings. Example: "WDT" option of the Microchip PIC16F628A device.

© 2017 Phyton, Inc. Microsystems and Development Tools

218 CPI2-B1 In-System Device Programmer

9.3.2.2.12 Function GetProgOptionLong
long GetProgOptionLong(char option_name[]);
Description:

Returns current value of the option_name programming option. The option must be of type ‘Long’ -
a 32-bit integer. Example: "Tpgm" option of the Atmel ATF2500C device.

9.3.2.2.13 Function GetProgOptionString
void GetProgOptionString(char option_name[], char str[]);
Description:
Copies the current value of the option_name programming option to the str string. The option must

be of type 'String’ - a text string. Example: "Copyright" option of the National Semiconductor
COPB87SERY device.

9.3.2.2.14 Function mprintf
void mprintf(char format[], ...);
Description:

The mprintf function is used just like printf but the message is displayed not in the Console
window but in the "Operation Progress" window of the Program Manager window.

9.3.2.2.15 Function OpenProject
void OpenProject(char file_namel]);

Description:

Load the project with the name specified as the file_name. Call of this function is equivalent of loading
the project via the menu Project > Open. Use of projects is very convenient, especially for mass
production.

9.3.2.2.16 Function ProgOptionDefault
void ProgOptionDefault(char option_namef(]);
Description:

Set the default value of the option_name programming option.

9.3.2.2.17 Function ReadShadow Area

void ReadShadowArea(int sub_level, unsigned long addr, unsigned int len, void data[], int
site=0);

Description:

Read data from a specified shadow memory to the array "data". First, you have to create a shadow area
through the menu Configure > The Serialization, Checksum and Log File dialog > Custom shadow

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 219

memory tab. The start address of the data to be written into the addr may differ from the start address
of the custom shadow area but it is necessary the end address should not exceed the end address of
the shadow area.

The int site=0 means the socket# 0; i.e., the only socket for a single-site programmer or the first socket
in a gang programmer. In the gang mode it is necessary to specify the socket number (the first one has
the number 0).

9.3.2.2.18 Function SetProgOption
void SetProgOption(char option_name[], char option_string[]);
Description:

Set value for the programming option. The programming options are listed in the lower right corner of
the Device and Algorithm Parameters' Editor window.

Parameters:
option_name - option name, e.g. "Vpp".

option_string - option value as character string. Options can be of seweral types (certain option type
can be determined by hitting the "Edit" button in the Device and Algorithm Parameters' Editor
window).

« floating point numbers, for example, programming wltage. For such options, the option_string
parameter should represent a floating point number, for example, "12.3".

« integer numbers. The option_string parameter should represent an integer value, for example,
|I215II.

* "menu” type options. In these cases, the option_string parameter should be a menu item string, for
example, "Disabled". Menu can be obsened by hitting the "Edit" button in the Device and

Algorithm Parameters' Editor window).

« character strings, for example, "Copyright".

» check boxes option. Check boxes option is a list of options; each of them can be checked or
unchecked. To specify a value for a check box option, append an '=' sign to the option name followed
with 0 or 1. For example, to set up the CPD memory protection bit of PIC18F8720 chip, write

SetProgOption("Memory protection”, "CPD=1");
Examples

SetProgOption("Vpp", "12.5");
SetProgOption("PWRT", "Disabled");

See also examples that come with the ChipProg package.

9.3.2.2.19 Function WriteShadow Area

void WriteShadowArea(int sub_level, unsigned long addr, unsigned int len, void data[], int
site=0);

Description:

© 2017 Phyton, Inc. Microsystems and Development Tools

220

CPI2-B1 In-System Device Programmer

9.3.2.2.20

9.3.2.2.21

9.3.2.2.22

9.3.2.2.23

9.3.2.2.24

9.3.2.2.25

Write data from the array data to a specified shadow memory. First, you hawe to create a shadow area
through the menu Configure > The Serialization, Checksum and Log File dialog > Custom shadow
memory tab. The start address of the data, to be written into the addr, may differ from the start address
of the custom shadow area but it is necessary that the end address should not exceed the end address
of the shadow area.

The int site=0 means the socket# 0; i.e., the only socket for a single-site programmer or the first socket
in a gang programmer. In the gang mode it is necessary to specify the socket number (the first one has
the number 0).

Variable BlankCheck
extern int BlankCheck;

The value of the "Blank check before program” option in the _Program Manager window (tab
Options). Assigning value to BlankCheck automatically changes the option in the window and vice
versa.

Variable BufferStartAddr
extern unsigned long BufferStartAddr;

The value of the start address in the buffer used for operation. Assigning value to BufferStartAddr
automatically changes the buffer start address field in the window and vice versa.

Variable Checksum

extern unsigned long Checksum;

A checksum of the data to be written into the device being currently programmed. This checksum can
be specified by the script that defines an algorithm for the checksum computation. This parameter is
usually set in the Checksum tab of the Serialization, Checksum and Log File dialog of the
Configure menu.

Variable ChipEndAddr
extern unsigned long ChipEndAddr;

The value of the start address in the device used for operation. Assigning value to ChipEndAddr
automatically changes the end address field in the window and vice versa.

Variable ChipStartAddr
extern unsigned long ChipStartAddr;

The value of the start address in the device used for operation. Assigning value to ChipStartAddr
automatically changes the start address field in the window and vice versa.

Variable DeviceBatchSize

extern unsigned long DeviceBatchSize;

Number of devices in the lot to be programmed. This variable is used for counting down the devices from

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 221

9.3.2.2.26

9.3.2.2.27

9.3.2.2.28

9.3.2.2.29

9.3.2.2.30

9.3.2.231

9.3.2.2.32

the DeviceBatchSize value to zero. A check box for enabling the device count-down and other controls
is accessible in the Statistic tab of the Program Manager window.

Example: if you need to program 10000 devices of the same type with the same data and then the
programming should be stopped, the DeviceBatchSize=10000.

Variable DialogOnError
extern int DialogOnError;

If the value of this variable is set to nonzero (default), then if there is an error occurred during a
programming function execution (see ExecFunction), the dialog with error description is displayed.
Otherwise no dialog is displayed and ExecFunction() immediately returns with code EF_ERROR.

Variable GangMode

extern int GangMode;

The variable's value will be 1 if the ChipProgUSB software has been launched in the gang mode; for
example, if it has been launched in the command line mode with the key /GANG, otherwise it will be 0.
The GangMode variable is accessible for reading only.

Variable InsertTest
extern int InsertTest;

The value of the "Insert test" option in The Program Manager Window (tab Options). Assigning value
to InsertTest automatically changes the option in the window and \ice \ersa.

Variable LastErrorMessage(]
extern char LastErrorMessage(];

String that contains the last error message about operation on device. See also ExecFunction.

Variable NumSites

extern int NumSites;

The number of the gang programmer's operable sockets (for example, for a ChipProg-G41 device
programmer, NumSites is four. The NumSites variable is accessible for reading only.

Variable ReverseBytesOrder
extern int ReverseBytesOrder;

The value of the "Reverse bytes order" option in The Program Manager Window (tab Options).
Assigning value to ReverseBytesOrder automatically changes the option in the window and vice
versa.

Variable SerialNumber

extern unsigned long SerialNumber;

The serial number of the device currently being programmed. This number can be specified by the script

© 2017 Phyton, Inc. Microsystems and Development Tools

222 CPI2-B1 In-System Device Programmer

that defines a start serial number and an algorithm for the serial number incrementation. These
parameters are usually set in the Serial Number tab of the Serialization, Checksum and Log File
dialog of the Configure menu.

9.3.2.2.33 Variable Signature

extern char Signaturel[];

A string of characters to be written in the device being currently programmed as a unique signature. This
signature can be specified by the script. Usually it is set in the Signature String tab of the
Serialization, Checksum and Log File dialog of the Configure menu.

9.3.2.2.34 Variable VerifyAfterProgram
extern int VerifyAfterProgram;

The value of the "Verify after program" option in The Program Manager Window (tab Options).
Assigning value to VerifyAfterProgram automatically changes the option in the window and vice
versa.

9.3.2.2.35 Variable VerifyAfterRead
extern int VerifyAfterRead;

The value of the "Verify after read" option in The Program Manager Window (tab Options). Assigning
value to VerifyAfterRead automatically changes the option in the window and vice versa.

9.3.2.3 Mathematical functions

2
=]

)
2
=]

O
o
n

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 223

frexp

S

9.3.2.4 String operation functions

Functions for string operation receive arrays as parameters. Functions of the memxxxx type can
use arrays of any type; other functions use the char arrays.

The script file language does not support pointers, that is why all string operation functions include
the index, desr_index, and scr_index parameters to specify the initial shift in the array. The default
value of these parameters is 0. These parameters are not considered in the following line function
descriptions.

Note once again that arrays are transferred "by pointer", that is, the array itself is transferred and
not its copy.

memccpy
memcpy

memmove
movmem
memchr
memset

setmem

memcmp
memicmp
stpcpy

strcat
strchr
stremp
stricmp
strempi
[
strcpy
m

striwr

© 2017 Phyton, Inc. Microsystems and Development Tools

224 CPI2-B1 In-System Device Programmer

[ttttl
strncat
strncmp
strncmpi
strnicmp
strncpy
strnset
strpbrk
strspn
[tfifl

strrchr

strrev

|****|

9.3.2.5 Character operation functions

isalnum

isalpha

isascii

iscntrl
isdigit
isgraph
islower
isprint
ispunct

ISSpace

isupper
isxdigit
toascii

tolower

toupper

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 225

9.3.2.6 Functions for file and directory operation

chdir

getcurdir
findfirst
findnext
_ff attrib
ff_time
_ff_date
ff_size
_ff name
fnsplit
merge
fullpath
getcwd
getdisk()
setdisk
mkdir

rmdir

searchpath
getdfree

unlink

creatnew

creattemp

EE

D
=]
=

filelength
getftime

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

226 CPI2-B1 In-System Device Programmer

rename

setmode

| ****l

9.3.2.7 Stream file functions

clearerr

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 227

Kkkk

rewind

9.3.2.8 Formatted input-output functions

Formatted input-output functions perform data conversion in accordance with the format line. You
can find description of the format line in any book on the C language.

Note that the arguments for input functions should be arrays, and not simple variables. This is
because the pointers are not supported in the script file language, and it is impossible to transfer
an address with the simple variable.

Attention! Your arguments passed to the formatted input-output functions shall match the format
line. Otherwise, the CPI2-B1 program may fail.

fprintf

fscanf

scanf

pscanf

sscanf

printf

_brintf

sprintf
MessageBox
MessageBoxEx

9.3.2.9 Script File Manipulation Functions

ExecScript
GetScriptFileName
TerminateScript
TerminateAllScripts

exit

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

228 CPI2-B1 In-System Device Programmer

9.3.2.10 Text editor functions

The text editor functions manipulate with text in the Source You can start the script files with the
custom hot keys (for more about this, see).

All text editor functions assume that the text editor window is active, when function is called, so
they do not receive the window handle as a parameter unlike other functions that manipulate
windows in CPI2-B1.

The CPI2-B1 package includes sewveral examples of script files performing useful commands. The
sources are located in the KEYCMD sub-directory.

Note that line and column numbers begin from 1.
GotoXY

Up

-
S
<
=

—
D
=3

2y
=

Getline
ForwardTill
ForwardTillNot
_GetWord
WordLeft
WordRight
FirstWord
SetMark
GetMark

Text

BlockBegin

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78
http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 229

BlockEnd
BlockOff

BlockCopy

BlockFastCopy
BlockDelete

BlockMove
BlockPaste
Search
SearchReplace
SetFileName
GetFileName
SaweFile

|*~k**|
OpenEditorWindow

Text editor built-in variables

InsertMode
CaseSensitive
WholeWords
[+
BlockColl
BlockCol2
BlockLinel
BlockLine2
BlockStatus
CurLine
CurCol
LastFoundString

9.3.2.11 Debug shell control functions

These functions control CPI2-B1.

RedrawScreen

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

230

CPI2-B1 In-System Device Programmer

LoadDesktop
LoadOptions
SaveDesktop
SaveOptions

OpenWindow
OpenUserWindow

OpenStreamWindow

CloseWindow
FindWindow
MoveWindow
ActivateWindow
SetWindowSize
SetWindowsSizeT
GetWindowWidth

GetWindowHeight
SetWindowFont

WindowHotkey
AddWatch
Inspect
ExecMenu
ExitProgram
LoadProject
CloseProject
LoadProgram

ReloadProgram
SaveData

9.3.2.12 Windows operation functions and other system functions

Attention! Only the experienced programmers should use the Windows operation functions. These
functions provide advanced capabilities, but when used incorrectly, they may hang the operating

system.
API

LoadLibrary
FreeLibrary

WaitSendMessage

WaitGetMessage

inport
inportb
outport
outportb

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 231

exec

getenv
putenv

9.3.2.13 Graphical output functions

Graphical output functions draw various graphical objects and text in special User window. To draw
in a user window, first open it with the OpenUserWindow function that returns the window identifier
(handle). Then use the identifier to reference the window (multiple user windows can be open at the
same time). For more information, see User window.

In all graphical output functions, the first parameter () is the window identifier.
OpenUserWindow

ClearWindow

SetCaption
SetToolbar
SetUpdateMode
UpdateWindow

SelectPen
SelectBrush
SelectFont
SetTextColor
SetBkColor
SetBkMode

DisplayText
DisplayTextF

MowveTo
LineTo

FillRect

Rectangle
|~k~k~k~k|

InvertRect
Curcuit
Ellipse
Polyline

© 2017 Phyton, Inc. Microsystems and Development Tools

232 CPI2-B1 In-System Device Programmer

SetPixel
AddButton
RemowveButtons
WaitWindowEvent

|*~k**|
LastEventint{l...4}

9.3.2.14 /O Stream window operation functions

Stream window control functions allow you to display text in the special /O Stream window.

In all Stream window control functions, the first parameter (handle) is the window identifier.
OpenStreamWindow

SetTextColor

whprintf

wgetchar

LastChar

wgethex

wgetstring

LastString

9.3.2.15 Event Wait Functions

These extremely useful functions serve to simulate external environment. Also, you can use them in

simulators to develop various tests.

Wait

WaitMemoryAccess

WaitExprTrue
WaitExprChange

WaitStop
WaitWindowEvent

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 233

9.3.2.16 Other Various Functions

random
randomize

9.3.3 Built-in Variables by Group

You can access scriptlanguage built-in variables in the same way as regular global variables. However, some
built-in variables are accessible onlyfor reading, and in case of attempt to write to such variable.

The built-in variables are declared in the system.h header file.

Programming variables:
InsertTest
ReverseBytesOrder
BlankCheck
VerifyAfterProgram
VerifyAiterRead
ChipStartAddr

ChipEndAddr
BufferStartAddr

LastErrorMessage
DialogOnError

Text editor built-in variables:
InsertMode
CaseSensitive
WholeWords
RegularExpressions
BlockCol1l
BlockCol2
BlockLinel
BlockLine2
BlockStatus

CurLine

CurCol

LastFoundString

Miscellaneous variables:
WorkFieldWidth

WorkFieldHeight

© 2017 Phyton, Inc. Microsystems and Development Tools

234

CPI2-B1 In-System Device Programmer

9.3.4

AppIName
DesktopName
SystemDir

errno
fmode

MainWindowHandle

NumWindows

WindowHandles

SelectedString
LastMessagelnt

LastMessagelLong

List of Built-in Functions and Variables

Below is the alphabetical list of all built-in functions and variables of scripting language.

AllProgOptionsDefault

API
ActivateWindow
AddButton
AddWatch

AppIName]|
BackSpace
BlankCheck
BlockBegin
BlockColl
BlockCol2
BlockCopy
BlockDelete
BlockEnd
BlockFastCopy
BlockLinel
BlockLine2
BlockMove
BlockOff
BlockPaste
BlockStatus
BufferStartAddr
CaseSensitive
CheckSum
ChipEndAddr

ChipStartAddr
ClearWindow

CloseProject
CloseWindow
Cr

CurChar
CurCaoal

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 235

CurlLine
Curcuit
DelChar
DelLine

DesktopName
DialogOnError
DisplayText
DisplayTextF
Down

Ellipse

Eof

Eol
ExecFunction
ExecMenu

ExecScript
ExitProgram
Expr
FileChanged
FillRect
FindWindow
FirstWord
FloatExpr
ForwardTill
ForwardTillNot
FrameRect
FreeLibrary

GetByte
GetDword

GetFileName
GetLine

GetMark
GetMemory
GetProgOptionBits
GetProgOptionFloat
GetProgOptionList
GetProgOptionLong

GetProgOptionString
GetScriptFileName
GetWindowHeight
GetWindowWidth
GetWord

GotoXY

InsertMode
InsertTest

Inspect

InvertRect
LastChar

© 2017 Phyton, Inc. Microsystems and Development Tools

236

CPI2-B1 In-System Device Programmer

LastErrorMessage
LastEvent
LastEventint{1...4}
LastFoundString
LastMessageilnt
LastMessagelong
LastString

Left

LineTo

LoadDesktop
LoadLibrary

LoadOptions
LoadProgram

LoadProject
MainWindowHandle

MaxAddr

MessageBox
MessageBoxEx
MinAddr

MoveTo
MoveWindow
NumWindows
OpenEditorWindow
OpenStreamWindow
OpenUserWindow

OpenWindow
Polyline
ProgOptionDefault
Rectangle
RedrawScreen
ReqgularExpressions
ReloadProgram
RemowveButtons
RewerseBytesOrder
Right

SaweData

SaveDesktop
SaweFile

SawveOptions
Search

SearchReplace
SelectBrush
SelectFont
SelectPen
SelectedString|
SetBkColor
SetBkMode

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 237

SetByte

SetCaption
SetDevice

SetDWord
SetFileName
SetMark

SetMemory
SetPixel

SetProgOption
SetTextColor
SetToolbar
SetUpdateMode
SetWindowFont
SetWindowSize
SetWindowSizeT
SetWord

SystemDir|
TerminateAllScripts
TerminateScript
Text

Tof

Up

UpdateWindow
VerifyAfterProgram
VerifyAfterRead
WaitEprTrue
WaitGetMessage
WaitSendMessage
WaitWindowE vent
WholeWords
WindowHandles
WindowHotkey
WordLeft
WordRight

WorkFieldHeight

WorkFieldWidth
GetWord
ff_attrib

_ff _date
ff name

_ff size

_ff time

_fmode
fullpath

_printf

abs

coSs

QD

© 2017 Phyton, Inc. Microsystems and Development Tools

238

CPI2-B1 In-System Device Programmer

filelength
fileno

findfirst
findnext
floor
fmod

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 239

=

ell
rite
etc
getcurdir
etcwd
getdate
getdfree
getdisk()
getenv
getftime

=

B

f

gettime
getw
inport

memccpy
memchr
memcmp
memcpy

memicmp
memmove

memset
mkdir
movmem
mprintf
open
outport
outportb

© 2017 Phyton, Inc. Microsystems and Development Tools

240 CPI2-B1 In-System Device Programmer

randomize
read
rename
rewind
rmdir
scanf
searchpath
setdisk
setftime
setmem
setmode

|m
]

sprintf

L

srand
sscanf
stpcpy
strcat
strchr

strcmp
strcmpi
strcpy
strespn
stricmp
strlen
striwr
strncat
strncmp
strncmpi
strncpy
strnicmp
strnset

strpbrk
strrchr

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 241

9.35

9.3.5.1

wgetstring
wprintf
rite

Scripting Functions
Enter topic text here.

fnmerge

Declaration:

woid fnmerge(char path[], char drive[], char dir[], char name[], char ext[]);

Builds a path from component parts.
fnmerge makes the path name from its components. The new path name is
X\DIR\SUBDIR\NAME.EXT

where:

drive = X

dir = \DIR\SUBDIR\
name = NAME

ext = EXT

fnmerge assumes there is enough space in path for the constructed path name. The maximum
constructed length, MAXPATH, is defined in system.h.

fnmerge and fnsplit are invertible: if you split the given path with fnsplit, then merge the resultant
components with fnmerge and you end up with this path.

© 2017 Phyton, Inc. Microsystems and Development Tools

242 CPI2-B1 In-System Device Programmer

9.3.5.2 Function _ff_attrib

Declaration:
char _ff_attrib(char ffblk[]);
Description

Returns the attribute byte of the file found upon the function findfirst or findnext access. The ffblk
parameter is the buffer filled with information on the file after findfirst or findnext access.

Example

See function findfirst

9.3.5.3 Function _ff_date

Declaration:
int ff _date(char ffblk[]);
Description

Returns the word with the file (creation or modification) date for the file found upon the function findfirst or
findnext access. The ffblk parameter is the buffer filled with information on the file after the findfirst or
findnext access.

Example

See function findfirst

9.3.5.4 Function _ff name

Declaration:
void ff _name(char ffblk[], char fnane[]);
Description

Copies the name of the file found upon the function findfirst or findnext access to the fmane array. The
fiblk parameter is the buffer filled with information on the file after the findfirst or findnext access. The file
name does not contain the disk hame or path.

Example

See function findfirst

9.3.5.5 Function _ff _size

Declaration:
long _ff_size(char ffblk[]);
Description

Returns the size of the file found upon the function findfirst or findnext access. The ffblk parameter is the
buffer filled with information on the file after the findfirst or findnext access.

Example

See function findfirst

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 243

9.3.5.6 Function _ff time

Declaration:
int ff_tinme(char ffblk[]);
Description

Returns the word with the file creation (or modification) time for the file found upon the function findfirst or
findnext access. The ffblk parameter is the buffer filled with information on the file after the findfirst or
findnext access.

Example

See function findfirst.

9.3.5.7 Function _fullpath

Declaration:

int _fullpath(char buff], char path[]);

Description

Converts a relative path name to the absolute one.

_fullpath conwerts the relative path name in a path to the absolute path name that is stored in the
array of characters pointed to by buf. The function returns FALSE the path contains an invalid drive
letter.

Returned value

If successful, the _fullpath function will return TRUE. On error, it returns FALSE.

9.3.5.8 Function _GetWord

Declaration:
void _GetWord(char dest[]);
Description

Copies the word under the cursor to the dest array. If there is no word under the cursor, then the first
element of dest will be 0.

9.3.5.9 Function _printfv

Declaration:

void _printf(char format[], ...);

Description

Acts like printf, but does not append the newline character to the line.

Note. Your arguments passed to this function shall match the format line. In case of mismaitch, the <%
CM%> program may crash, because it cannot check the correspondence between the format string and
parameters passed.

© 2017 Phyton, Inc. Microsystems and Development Tools

244 CPI2-B1 In-System Device Programmer

9.3.5.10 Function abs

Declaration:

| ong abs(long x);

Description

The abs function calculates the absolute value of the integer argument val.
Returned value

The abs function returns the absolute value of the integer argument val.

9.3.5.11 Function acos

Declaration:
float acos(float x);
Description

The acos function calculates the arc cosine of the floating-point number x. Argument x should range from
-1to 1, otherwise the result will be equal to 0 (for x> 1) or to PI (for x< -1). The function returns value in
the range from 0 to PI.

Returned value

The acos function returns the arc cosine of argument x.

9.3.5.12 Function ActivateWindow

Declaration:
voi d Activat eWndow unsi gned | ong handl e);
Description

Activates the specified window. The window becomes ‘active' and is placed over all other windows of <%
CM%>.

9.3.5.13 Function AddButton

Declaration:

int AddButton(unsigned | ong handl e, char button_text[], int x, int y, int wdth,
int height);

Description

Adds a button to the window. The button is a usual button of the standard Windows dialog boxes. When
you click the button, the eventis generated that can be captured with the WaitWindowEvent function, and
the corresponding operation is carried out.

If the specified button already exists in the window (already added by AddButton with the same
parameters), the new button will not be added and the existing button will be used.

Parameters:

button_text - the text witten on the button

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 245

X, Yy - the coordi nates of the upper left corner within the w ndow
wi dth - the button width
hei ght - the button height

Returned value

The button identifier. Itis used by the WaitWindowEvent function to determine, which button was clicked
(there multiple buttons in the window).

Example
AddButton(handl e, "Start", 50, 50, 70, 24);

9.3.5.14 Function AddrExpr

Declaration:
unsi gned | ong Addr Expr(char str[]);
Description

Calculates the expression and returns the result (the str parameter) as an address in microcontroller
memory.

Example

int addr_port0 = Addr Expr (" PORT0");
Wi t Menor yAccess(addr _port0, AS DATA, 1, MA WRITE);

Note that 'AddrExpr("PORTO0")' is the same as 'Expr("&PORTO0")".

Also, see Expr, FloatExpr, Operations and Expressions.

9.3.5.15 Function AddWatch

Declaration:
voi d AddWat ch(char nane[], int format=DF_HEX);
Description

Adds the specified name (the name parameter) to the Watches window in the specified format. If the
Watches window is not already opened, it will be opened automatically.

Examples

AddWat ch(" Durati on", DF_DEC);
AddWat ch(" Addr ess") ; /1 the default format is hexadeci nmal

9.3.5.16 Function API

Declaration:
unsi gned | ong APl (char func_nane[], ...);
Description

Calls a 16-bit Windows API function with the name specified in func_name and transfers the parameters

© 2017 Phyton, Inc. Microsystems and Development Tools

246 CPI2-B1 In-System Device Programmer

specified in API to this function.

Make sure you use the correct parameter number and size, because <% CM%> knows nothing about
them. When necessary, use the explicit type conversions and put character 'L' in the end of long-type
constants.

To reduce problems, when an arrayis transferred as the parameter, a long (32-byte) pointer is
transferred.

Returned value

What was returned by the called API function is in registers DXAX. Ifitis a pointer, then data can be
accessed using the peek, poke, peekb, or pokeb functions.

Example
int ScreenHei ght = APl ("Get SystenmMetrics”, SM CYFULLSCREEN);

9.3.5.17 Function asin

Declaration:
float asin(float x);
Description

The asin function calculates the arc sine of the floating-point number x. The argument x should range
from -1 to 1, otherwise the result will be equal to P1/2 (for x> 1) or to -P1/2 (for x < -1). The function returns
value in the range from -PI/2 to PI1/2.

Returned value

The asin function returns the arc sine of argument x.

9.3.5.18 Function atan

Declaration:
float atan(float x);
Description

The atan function calculates the arc tangent of the floating-point number x. The function returns value in
the range from -PI/2 to PI/2.

Returned value

The atan function returns the arc tangent of argument x.

9.3.5.19 Function atof

Declaration:
float atof(char s[]);
Description

Converts an ASCII-string (parameter s) into the floating-point number.

9.3.5.20 Function atoi

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 247

int atoi(char s[]);
Description

Converts an ASCII-string (parameter s) into the integer number.

9.3.5.21 Function BackSpace

Declaration:
voi d BackSpace();
Description

Works like the BackSpace key.

9.3.5.22 Function BlockBegin

Declaration:
voi d Bl ockBegi n(int block_type);
Description

Begins marking of block (see Block Operations). The block_type parameter indicates the type of block.
For convenience, the system.h header file defines constants for the block functions:

EB_NONE - no block (not used in this function)
EB LI NE - line block
EB VERT - vertical block

EB STREAM - stream bl ock

9.3.5.23 Function BlockCopy

Declaration:
voi d Bl ockCopy();
Description

Copies the block to the clipboard.

9.3.5.24 Function BlockDelete

Declaration:
voi d Bl ockDel ete();
Description

Deletes the block. The block is copied to the clipboard

9.3.5.25 Function BlockEnd

Declaration:

voi d Bl ockEnd();

Description

Finishes marking of block. Itis supposed that before calling BlockEnd(), the BlockBegin function is called

© 2017 Phyton, Inc. Microsystems and Development Tools

248 CPI2-B1 In-System Device Programmer

and then the cursor is moved to the end of the block.

9.3.5.26 Function BlockFastCopy

Declaration:
voi d Bl ockFast Copy();
Description

Copies the block from the cursor position.

9.3.5.27 Function BlockMove

Declaration:
voi d Bl ockMove();
Description

Moves the block to the cursor position.

9.3.5.28 Function BlockOff

Declaration:
voi d Bl ockOf ();
Description

Turns the block off..

9.3.5.29 Function BlockPaste

Declaration:
voi d Bl ockPaste();
Description

Pastes the block from the clipboard to the cursor position

9.3.5.30 Function CallLibraryFunction

Declaration:
unsi gned | ong Cal I Li braryFunction(unsigned |ong inst, char func_nane[], ...);

Description

Calls the func_name function from DLL and its HINSTANCE is transferred to inst. Otherwise, this function
is similar to the function API call.

Example
unsi gned | ong i nstance = LoadLi brary("EXTEND. DLL");
long result = CallLibraryFunction(instance, "Initialize", 0, 1L);

9.3.5.31 Function ceil

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 249

float ceil (float x);

Description

The ceil function calculates the least integer value thatis greater than or equal to x.
Returned value

The ceil function returns the double-type number equal to the leastinteger thatis no greater than x.

9.3.5.32 Function chdir

Declaration:
int chdir(char path[]);
Description

Sets up the new default directory specified in parameter path. The latter might also contain a disk name,
but the disk does not change: only the default directory changes on this disk.

Returned value

If the directory change is successful, 0 will be returned, and -1 otherwise.

9.3.5.33 Function CheckSum

Declaration:

unsi gned | ong CheckSun(unsi gned | ong start_addr, unsigned |ong end_addr, int
addr _space);

Description

Calculates the checksum for data in the addr_space memorythat starts from start_addr and ends at
end_addr. The checksum is calculated by simple addition of byte values.

Returned value
The 32-bit checksum.
Example
printf("%08l X', CheckSum(0, Ox1FFF, AS DATA));

9.3.5.34 Function chsize

Declaration:

int chsize(long handle, long size);

Description
Changes the file size.

chsize changes the size of the file associated with handle. It can truncate or extend the file,
depending on the value of size compared to the file's original size.

The mode, in which you open the file, must allow writing.

If chsize extends the file, it will append the null characters (\0). If it truncates the file, all data
beyond the new end-of-file indicator will be lost.

© 2017 Phyton, Inc. Microsystems and Development Tools

250 CPI2-B1 In-System Device Programmer

Returned value

On success, chsize returns 0. On failure, it returns -1 and sets the errno global variable to one of
the following values:

EACCESS Per mi ssi on deni ed
EBADF Bad file nunber
ENGCSPC No space left o

9.3.5.35 Function ClearAllBreaks

Declaration:
void C earAll Breaks();
Description

Clears all breakpoints of all types.

9.3.5.36 Function ClearBreak

Declaration:
voi d O earBreak(unsigned | ong addr);
Description

Clears the code breakpoint at the specified address.

9.3.5.37 Function ClearBreaksRange

Declaration:
voi d d ear BreaksRange(unsi gned | ong start_addr, unsigned |ong end_addr);
Description

Clears the code breakpoints in the range from start_addr to end_addr inclusive.

9.3.5.38 Function clearerr

Declaration:

woid clearerr(unsigned long stream);
Description

Resets error indication.

clearerr resets the specified stream's error and end-of-file indicators to 0. Once the error indicator is
set up, the stream operations continue to return the error status until a call is made to clearerr or
rewind. The end-of-file indicator is reset with each input operation.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 251

9.3.5.39 Function ClearWindow

Declaration:
voi d O ear Wndow(unsi gned | ong handl e);
Description

Clears the specified window, which can be a User window or an |/O Stream window.

9.3.5.40 Function close

Declaration:

int close(long handle);
Description

Closes a file.

The close function closes the file associated with handle (the file handle obtained from a call to
creat, creatnew, creattemp, dup, dup?,).

It does not write the Ctrl-Z character to the end of the file. If you want to terminate the file with Ctrl-
Z, you must explicitly output it.

Returned value

Upon successful completion, close returns 0. On error (if it fails because handle is not the handle
of a valid, open file), close returns -1 and the errno global variable is set to

EBADF Bad file number

9.3.5.41 Function CloseProject

Function CloseProject

Declaration:

void C oseProject();

Description

Closes the project. If no projectis loaded, nothing will happen.

Calling this function is useful, if you want to prepare the shell for loading a program without a project.

9.3.5.42 Function CloseWindow

Declaration:

voi d O oseW ndow(unsi gned | ong handl e) ;

Description

Closes the specified window. The handle parameter is the window identifier produced by the calls of the
OpenWindow, and FindWindow functions.

9.3.5.43 Function cos

Declaration:

float cos(float x);

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

252

CPI2-B1 In-System Device Programmer

Description
The cos function calculates the cosine of the floating-point number x.
Returned value

The cos function returns the cosine of argument Ox.

9.3.5.44 Function Cr

Declaration:
void O ();
Description

Works like the Enter key.

9.3.5.45 Function creat

Declaration:

int creat(char path[], int amode);

Description

Creates a new file or overwrites an existing one.

Note. Remember that the backslash in a path requires \'.

creat creates a new file or prepares to rewrite an existing file given by path. amode applies only to
newly created files. A file created with creat is always created in the translation mode specified by
the _fmode global variable (O_TEXT or O_BINARY). If the file exists and the write attribute is set,
then creat will truncate the file to the length of O bytes, leaving the file attributes unchanged. If the
existing file has the read-only attribute set, then the creat call will fail and the file will remain
unchanged. The creat call examines only the S_IWRITE bit of the access-mode word amode. If this
bit is 1, then the file can be written to. If the bit is O, then the file is marked as read-only. All other
operating system attributes are set to 0. amode can be one of the following (defined in system.h):

Value of amode Access permission
S IWRITE Perm ssion to wite
S | READ Perm ssion to read
SIREAD | S IWRITE Perm ssion to read and wite (wite perm ssion
inplies read perm ssion))

Returned value

Upon successful completion, creat returns the new file handle (a nonnegative integer); otherwise, it
returns -1. In the event of error, the errno global variable is set to one of the following:

EACCES Per m ssi on deni ed
ENCENT Path or file name not found
EMFI LE Too many open files

9.3.5.46 Function creatnew

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 253

int creatnew(char path[], int amode);
Description
Creates a new file.

creatnew is identical to creat with the only exception: if the file exists, then creatnew will return
error and leawve the file untouched. The amode

FA_HIDDEN Hidden file

FA_RDONLY Read-only attribute
FA_SYSTEM System file

Returned value

Upon successful completion, creatnew returns the handle of new file (a non-negative integer);
otherwise, it returns -1. In the event of error, the errno global variable is set to one of the following
values:

EACCES Permission denied

EEXST File already exists
EMFILE Too many open files
ENOENT Path or file name not found

9.3.5.47 Function creattemp

Declaration:
int creattemp(char path[], int attrib);
Description

Creates a unique file in the directory associated with the path name. A file created with creattemp
is always created in the translation mode specified by the _fmode global variable (O_TEXT or
O_BINARY).

path is the path name ending with backslash (\). The unique file name is selected in the directory
given by path. The newly created file name is stored in the path string supplied. path should be
long enough to hold the resulting file name. The file is not automatically deleted, when the program
terminates.

creattemp accepts attrib, the DOS attribute word. Upon successful file creation, the file pointer is
set to the beginning of the file. The file is opened for both reading and writing.

The attrib argument to creattemp can be either zero or an OR-combination of any of the following
constants (defined in system.h):

FA_ HI DDEN Hi dden file

FA_RDONLY Read-only attribute

FA SYSTEM System file

Returned value

Upon successful completion, the new file handle (a non-negative integer) is returned; otherwise, -1
is returned. In the event of error, the errna global variable is set to one of the following values:

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

254 CPI2-B1 In-System Device Programmer

EACCES Per m ssi on deni ed
EMFI LE Too many open files
ENCENT Path or file nanme not found

9.3.5.48 Function CurChar

Declaration:
char CurChar();
Description

Returns the character under the cursor. If the cursor is beyond the line end, then CurChar() will return 0.

9.3.5.49 Function Curcuit

Declaration:
void Curcuit(unsigned long handle, int x1, int yl, int x2, int y2);
Description

Draws an unpainted ellipse using the pen selected with the SelectPen function; (x1, y1) are the
coordinates of the upper left corner of the rectangle, in which the ellipse will be drawn, (X2, y2) are the
coordinates of its lower right corner.

9.3.5.50 Function delay

Declaration:
voi d del ay(unsigned int mlliseconds);
Description

Suspends the program for the specified time interval.

Example
while (1)
{
Step(); /1 to execute a step
RedrawScreen(); // To update the screen. Step() does not do it.
del ay(1000); /1 wait for one second. During this tine step
} /1 results can be observed

9.3.5.51 Function DelChar

Declaration:
voi d Del Char(int count=1);

Description

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 255

Deletes count characters beginning from the cursor position

9.3.5.52 Function DelLine

Declaration:
voi d Del Li ne(int count=1);
Description

Deletes the currentline.

9.3.5.53 Function difftime

Declaration:
unsigned long difftime(int timel[], int time2[]);
Description

Obtains the time difference between the two counts transferred in the timel and time2 arrays. The counts
should be obtained with the gettime function; timel is the earlier count.

Because the gettime function uses the system timer, computation error for the interval can be as long as
104 milliseconds.

Returned value
The time difference between two counts in milliseconds.
Example

int tinel[4];
int tine2[4];
gettime(tinel);
while (1)

{
gettine(time2);
printf("Difference: %u", difftinme(tinel, tine2));

9.3.5.54 Function DisplayText

Declaration:
voi d Displ ayText (unsigned | ong handl e, char text[], int x, int y);
Description

Displays textin the window using a monospaced font and text coordinates, thatis, x is the column
number, and y is the line number.

To display text with any font and in any place, use the DisplayTextF function.

© 2017 Phyton, Inc. Microsystems and Development Tools

256 CPI2-B1 In-System Device Programmer

9.3.5.55 Function DisplayTextF

Declaration:
voi d Di spl ayText F(unsigned | ong handl e, char text[], int x, int y);
Description

Displays textin the window using a proportional font (see the SelectFont function) and graphical
coordinates (in pixels).

9.3.5.56 Function Down

Declaration:
void Down(int count=1);
Description

Move the cursor count lines down. The same result can be achieved by incrementing the CurLine built-in
variable.

9.3.5.57 Function dup

Declaration:

int dup(long handle);

Description

Duplicates a file handle.

dup creates a new file handle that has the following common features with the original file handle:

Same open file or device
Same file pointer (thatis, changing the file pointer of one changes the other)

Same access mode (read, write, read/write))

handlecreatopen, dup, or dup?2.
Returned value

Upon successful completion, dup returns the new file handle, a nonnegative integer; otherwise, dup
returns -1. In the event of error, the errno global variable is set to one of the following values:

EBADF Bad fil e nunber

EMFI LE Too many open files

9.3.5.58 Function dup?2

Declaration:

int dup2(long oldhandle, long newhandle);

Description

Duplicates a file handle (oldhandle) onto an existing file handle (newhandle).

dup?2 creates a new file handle that has the following common features with the original file handle:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 257

Same open file or device
Same file pointer (that is, changing the file pointer of one changes the other)

Same access mode (read, write, read/write)

dup?2 creates a new handle with the value of newhandle. If the file associated with newhandle is
open, when dup?2 is called, then the file will be closed.

newhandle and oldhandle are the file handles obtained from the creat, open, dup, or dup? call.
Returned value

dup?2 returns 0 on successful completion, and -1 otherwise. In the event of error, the errno global
variable is set to one of the following values:

EBADF Bad file number

EMFILE Too many open files

9.3.5.59 Function Ellipse

Declaration:
void Ellipse(unsigned long handle, int x1, int yl, int x2, int y2);
Description

Draws an ellipse using the pen selected with the SelectPen function and paints it with the brush selected
by the SelectBrush function; (x1, y1) are the coordinates of the upper left corner of the rectangle, in which
the ellipse will be drawn; (X2, y2) are the coordinates of its lower right corner.

9.3.5.60 Function eof

Declaration:

int eof (I ong handl e);

Description

Checks for end-of-file.

eof determines whether the file associated with handle has reached the end-of-file.
Returned Value

If the current position is the end-of-file, then eof will return 1; otherwise, it will return 0. The return value of
-1 indicates an error; the errno global variable is setto

EBADF Bad file nunber

9.3.5.61 Function Eof

Declaration:
void Eof ();
Description

Move the cursor to the file end.

© 2017 Phyton, Inc. Microsystems and Development Tools

258 CPI2-B1 In-System Device Programmer

9.3.5.62 Function Eol

Declaration:
voi d Eol ();
Description

Move the cursor to the end of the currentline.

9.3.5.63 Function exec

Declaration:

int exec(char prograni], char parans[], char work_dir[], int show=SW SHOW ;
Description

Starts a Windows application or DOS.

Parameters:

program - the nanme of the file under execution

parans - the command |ine paraneters
work_dir - the working directory for the application to be started
show - the constant to define the application w ndow di splay node.

Constants with the SW prefix are given in system h.

Note that the script file will not wait for the started application to stop operation, if special measures are
not taken.

Returned value

What was returned by the function API ShellExecute, thatis, HINSTANCE of the application or error
message.

Example

exec("pifedit.exe", "command.pif");

9.3.5.64 Function ExecMenu

Declaration:
int ExecMenu(char title[], char itens[], int start_sel =0);
Description

Displays the dialog menu on the screen.

Parameters:
title - the dialog box title;
itens - the line describing the nmenu itens. Every itemends with the zero
byte; the last itemends with two zero bytes.
start_sel - the number of the menu itemthat will be selected by default,

when t he wi ndow opens.
Returned value

The number of the menu item selected by the user or -1, if the Cancel button or Esc keyis pressed. The
selected menu line is copied to the SelectedString[] built-in variable. If the user cancels the selection,
then the null string will be copied to the Selected String.

Example

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 259

int choice =
ExecMenu(" Choose programto | oad", /1 the title
" Load Exanple #1 \0"
" Load Exanple #2 \0"
" Load Exanple #3 \0" /1 the itens
"\0"); /1 the second zero at the end

swi tch (choice)

{
case 0: LoadProgran("EXAMPLEL. OW", LF_UBROCF); break;

case 1. LoadProgran("EXAMPLE2. OW", LF_UBRCF); break;
case 2: LoadProgran("EXAMPLE3. OW", LF_UBRCF); break;
default: printf("No exanple will be |oaded");

}

9.3.5.65 Function ExecScript

Declaration:

voi d ExecScript(char file_nanme[], char include_dir[]="", char defines[]="", int
debug=0);

Description

The ExecScript function starts the script file, whose name is indicated in the file_name parameter.

Parameters:
file_nane[] The name of the script file to be started. It can contain
a partial or full path. If extension is not specified,
the CVD extension will be automatically substituted. If the
file

is not found, the <¥%CM& systemdirectory will be
automati cal ly scanned.

include_dir[] The listing of directories, where the conpiler will search
for the #include-files. You can specify
mul tiple directory names separated by sem col on.

char defines[] The string with the definitions of preprocessor variabl es.
Al so, see the Script Files dialog.
debug If not equal to O, then the Script Source window will be

opened for the |oaded script file. After |oading the
script
file, switches to the debug node.

Note that only the first parameter is required, other parameters have the default values.
If the specified scriptfile is already under executing, then another script file cannot be loaded.

Also, see Inclusion of Files (#include).

9.3.5.66 Function exit

Declaration:
void exit();
Description

Stops execution of the script file that called this function. The file is unloaded from the memory, if

© 2017 Phyton, Inc. Microsystems and Development Tools

260 CPI2-B1 In-System Device Programmer

possible.

9.3.5.67 Function ExitProgram

Declaration:
voi d ExitProgram();
Description

Exits the work session of <% CM%> in the same way as by closing its window.

9.3.5.68 Function exp

Declaration:

float exp(float x);

Description

The exp function raises number e to the power x. The argument shall range from -88.72280 to 88.72280.
Returned value

The exp function returns the value of e raised to the power x.

9.3.5.69 Function Expr

Declaration:
unsigned long Expr(char str[]);
Description

Calculates the expression and returns the result as a 32-bit integer. The expression string is
passed in the str parameter.

Example
printf("Result=%08IX", Expr("array[i] -> StartValue");

Also, see AddrExpr, FloatExpr, Expressions.

9.3.5.70 Function fabs

Declaration:

float fabs(float Xx);

Description

The fabs function determines the absolute value of the floating-point number val.
Returned function

The fabs function returns the absolute value of val.

9.3.5.71 Function fclose

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 261

int fclose(unsigned long stream);
Description
Closes a stream.

fclose closes the specified stream. All buffers associated with the stream are flushed before
closing. The system-allocated buffers are freed upon closing.

Returned value

fclose returns 0 on success. It will return EOF, if any errors are detected.

9.3.5.72 Function fdopen

Declaration:

unsigned long fdopen(long handle, char type[]);
Description

Associates a stream with a file handle.

obtained from creatdup, dup2, or open. The type of stream must match the mode of the opened
handle. The type string used in a call to fdopen is one of the following values:

Value Description

r Open for reading only.

Create for writing.

a Append; open for writing at the end-of-file or create for writing, if the file does not exist.
r+ Open an existing file for update (reading and writing).

w+ Create a new file for update.

at

To specify that the given file is being opened or created in the text mode, append t to the value of
the type string (for example, rt or w+t).

Similarly, to specify the binary mode, append brb or w+b). If t or b is not given in the type string,
the mode is controlled by the _fmode global variable. If _fmode is set to O_BINARY, then files will
be opened in the binary mode. If _fmode is set to O_TEXT, then files will be opened in the text
mode.

Note. The O_* constants are defined in file system.h.

. output cannot be directly followed by input without intervening fseekor rewind,;
. input cannot be directly followed by output without intervening fseek, rewind, or an input that
encounters the end-offile.

Returned value

On successful completion, fdopen returns the unsigned long identifying the stream. In the event of
error, it returns 0.

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

262 CPI2-B1 In-System Device Programmer

9.3.5.73 Function feof

Declaration:

int feof(unsigned long stream);
Description

Detects the end-of-file on a stream.

feof tests the given stream for the end-of-file indicator. Once the indicator is set, the read
operations on the file return the indicator until rewind is called or the file is closed. The end-of-file
indicator is reset with each input operation.

Returned value

feof will return nonzero, if the end-of-file indicator is detected on the last input operation on the
specified stream, and 0, if the end-of-file has not been reached.

9.3.5.74 Function ferror

Declaration:

int ferror(unsigned long stream);
Description

Detects errors on stream.

ferror tests the given stream for a read or write error. If the stream's error indicator is set, it will
remain set until clearerr or rewind is called or until the stream is closed.

Returned value

ferror will return nonzero, if an error is detected on the specified stream.

9.3.5.75 Function fflush

Declaration:

int flush(unsigned long stream);
Description

Flushes a stream.

If the given stream has buffered output filush writes the output for stream to the associated file. The
stream remains opened after fflush is executed. fflush produces no effect on the unbuffered stream.

Returned Value

fflush returns 0 on success. It will return EOF, if any errors are detected.

9.3.5.76 Function fgetc

Declaration:
int fgetc(unsigned |long strean);

Description

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 263

Gets character from stream.
fgetc returns the next character on the specified input stream.
Returned Value

On success fgetc returns the character read after converting it to an int without the sign extension. On the
end-of-file or error, it returns EOF.

9.3.5.77 Function fgets

Declaration:

int fgets(char dest[], int n, unsigned |ong stream;
Description

Gets a string from a stream.

fgets reads characters from stream into the dest string. The function stops reading, when it reads either
n-1 characters or the newline character, which event comes first. fgets retains the newline character at
the end of dest. The null byte is appended to s to mark the end of the string.

Returned Value

TRUE is returned on success; and FALSE on the end-of-file or error.

9.3.5.78 Function FileChanged

Declaration:
int FileChanged();
Description

If the file is changed since the last save, it will return 1; O otherwise.

9.3.5.79 Function filelength

Declaration:

long filelength(long handle);

Description

Gets file size in bytes.

filelength returns the length (in bytes) of the file associated with handle.
Returned Value

On success, filelength returns the long value of the file length in bytes. On error, it returns -1 and
the errno global variable is set to

EBADF Bad file number

9.3.5.80 Function fileno

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

264

CPI2-B1 In-System Device Programmer

int fileno(unsigned |long strean;
Description
Gets file handle.

fileno returns the file handle for the given stream. If stream has more than one handle, then fileno will
return the handle assigned to the stream, when it was first opened.

Returned Value

fileno returns the integer file handle associated with the stream.

9.3.5.81 Function FillRect

Declaration:
void FillRect(unsigned long handle, int x1, int yl, int x2, int y2);
Description

Draws a painted rectangle using the brush selected with the SelectBrush function; (x1, y1) are the
coordinates of the upper left corner; (X2, y2) are the coordinates of the lower right corner.

9.3.5.82 Function findfirst

Declaration:
int findfirst(char path[], char ffblk[], int attrib);
Description

Starts search for files with the attributes specified in parameter attrib by the mask specified in path. The
search can be continued with the findnext function.

The ffblk parameter specifies an internal data storage buffer for the function. Its size should be 48 bytes.

After findfirst access, the ffblk buffer contains information about the found file. The _ff_attrib, _ff time,
ff_date, ff size and _ff name functions receive ffblk as the parameter and return information on the file.

Returned value
If the specified file is found, it will return 0, and -1 otherwise.
Example

char ffblk[48];
int done = findfirst("c:\\data.*", ffblk, 0);
long total _size = 0;
whil e (@done)
{
total _size += _ff_size(ffblk);
done = findnext(ffblk);
}

printf("Total size of the files @bu", total _size);

9.3.5.83 Function findnext

Declaration:

int findnext(char ffblk[]);

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 265

Description

Continues the search for files started by the findfirst function.

Parameter ffblk is the buffer filled upon the findfirst access.

After the findnext access, the ffblk buffer contains information on the found file. The _ff_attrib, ff time,
ff_date, _ff_size and _ff_name functions receive ffblk as the parameter and return information on the file.

Returned value
If the specified file is found, it will return 0, and -1 otherwise.
Example

See function findfirst.

9.3.5.84 Function FindWindow

Declaration:

unsi gned | ong Fi ndWndow(int type);

Description

Finds the window of specified type (disassembler, dump, etc.) among the opened windows.

Constants describing window types are declared in the system.h header file (see description of the
OpenWindow function).

If the window of specified type is opened but minimized, it will not be found.
Returned

The identifier of the opened window, if the latter is found; otherwise it returns 0.

9.3.5.85 Function FirstWord

Declaration:
void FirstWrd();
Description

Moves the cursor to the first non-empty character in the line.

9.3.5.86 Function FloatExpr

Declaration:
fl oat FloatExpr(char str[]);
Description

The same as Expr, butthe resultis a floating-point number.

Also, see AddrExpr, Expr.

9.3.5.87 Function floor

Declaration:

float floor(float x);

© 2017 Phyton, Inc. Microsystems and Development Tools

266 CPI2-B1 In-System Device Programmer

Description
The floor function calculates the greatestinteger number thatis no greater than x.
Returned value

The floor function returns the greatest floating-point number that is no greater than argument x, with the
fractional part equal to 0.

9.3.5.88 Function fmod

Declaration:

float frnod(float x, float y);

Description

The fmod function calculates the remainder of dividing x by y.
Returned function

The fmod function returns the value equal to x- i * y, for integer i, and the absolute value of x-i *yis less
than the absolute value of y. The returned value has the same sign as x. Ifyis equal to 0, then 0 will be
returned.

9.3.5.89 Function fnsplit

Declaration:
int fnsplit(char path[], char drive[], char dir[], char nane[], char ext[]);
Description

Selects components of the path to the file. Receives the file name with the path, for example,
C\PROGRAM\TEST.C, as the parameter path, and copies the components of the path to appropriate
lines. The useful constants for describing the array sizes (MAXPATH, MAXDRIVE, MAXDIR, MAXFILE,
MAXEXT) are defined in the system.h file.

If any of the path components is missing, then 0 will be the first character in the corresponding line.
Returned value

Returns the flag word describing the result. Constants corresponding to the flag word bits (WILDCARDS,
EXTENSION, ...) are defined in system.h.

9.3.5.90 Function fopen

Declaration:

unsi gned | ong fopen(char file_nanme[], char node[]);
Description

Opens a stream.

fopen opens the file specified by file_name and associates a stream with it. fopen returns an unsigned
long value to be used as the stream identificator in subsequent operations. The mode string used in
calls to fopen is one of the following values:

Val ue Description

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 267

r Open for reading only.

w Create for witing.

a Append; open for witing at the end-of-file or create for witing, if the
file does not exist.

r+ Qpen an existing file for update (reading and witing).

w+ Create a new file for update.

a+ (Open for append; open (or create, if the file does not exist) for update
at the end of file.

To specify that the given file is being opened or created in the text mode, append t to the value of the type
string (for example, rt or w+t).

Similarly, to specify the binary mode, append b to the type string (for example, rb or w+b). Iftor b is not
given in the type string, then the mode is controlled by the _fmode global variable. If _fmode is setto
O_BINARY, then files will be opened in the binarymode. If _fmode is setto O_TEXT, then files will be
opened in the text mode.

Note. The O_* constants are defined in file system.h.

When a file is opened for update, both input and output can be done on the resulting stream; however,
- output cannot be directly followed by input without intervening fseekor rewind;

- input cannot be directly followed by output without intervening fseek, rewind, or an input that
encounters the end-of-file.

Returned Value

On successful completion fdopen returns the unsigned long identifying the stream. In the event of error, it
returns 0.

9.3.5.91 Function ForwardTill

Declaration:
void ForwardTill (char delimts[]);
Description
Moves the cursor right until any character from delimits or the end-of-line is reached.
Example:
ForwardTi Il (" ({[<");

9.3.5.92 Function ForwardTillNot
Declaration:
voi d ForwardTill Not(char delimts[]);

Description

Moves the cursor right until any character not contained in delimits or the end-of-line is reached.

9.3.5.93 Function fprintf

Declaration:

int fprintf(unsigned |ong stream char format[], ...);

© 2017 Phyton, Inc. Microsystems and Development Tools

268 CPI2-B1 In-System Device Programmer

Description
Writes formatted outputto a stream.

fprintf accepts a series of arguments, applies to each of them a format specifier contained in the format
string pointed to by format and outputs the formatted data to a stream. There must be the same number
of format specifiers as the arguments.

Note. Your arguments passed to this function shall match the formatline. In case of mismatch, the <%
CM%> program may crash, because it cannot check the correspondence between the format string and
parameters passed. For more, see description of format specifiers for printf.

Returned Value

fprintf returns the number of bytes that were output. In the event of error, it returns EOF.

9.3.5.94 Function fputc

Declaration:

int fputc(char ¢, unsigned long strean);
Description

Puts a character on a stream.

fputc outputs character c to the specified stream.
Returned Value

On success, fputc returns character c. On error, it returns EOF.

9.3.5.95 Function fputs

Declaration:

int fputs(char s[], unsigned |ong strean);
Description

Outputs a string on a stream.

fputs copies the s null-terminated string to the given output stream; it does not append the newline
character and the terminating null character is not copied.

Returned Value

On success fputs returns a non-negative value. On error it returns the value of EOF.

9.3.5.96 Function FrameRect

Declaration:
voi d FrameRect (unsigned |ong handle, int x1, int yl, int x2, int y2);
Description

Draws an unpainted rectangle using the brush selected with the SelectBrush function. The drawing line

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 269

width is always of 1 pixel; (x1, y1) are the coordinates of the upper left corner, (X2, y2) are the coordinates
of the lower right corner.

9.3.5.97 Function fread

Declaration:

int fread(void s[], int size, int n, unsigned |ong strean);
Description

Reads data from a stream.

fread reads n items of data of size bytes long each from the given input stream into the block pointed to
bys. The total amount of bytes read is (n * size).

Returned Value

On success fread returns the number of items (not bytes) actually read. On end-of-file or error it returns a
short count (possibly 0).

9.3.5.98 Function FreeLibrary

Declaration:
voi d FreelLibrary(unsigned |ong inst);
Description

De-allocates the specified DLL. HINSTANCE obtained bythe LoadLibrary call is transferred as the
parameter.

9.3.5.99 Function freopen

Declaration:

unsigned long freopen(char file_name[], char mode[], unsigned long stream);
Description

Associates a new file with an opened stream.

freopen substitutes the specified file in place of the open stream. It closes the stream regardless of
whether the open succeeds. freopen is useful for changing the file attached to stdin, stdout, or
stderr. The mode string used in calls to fopen is one of the following values:

Value Description

r Open for reading only.

w Create for writing.

a

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update.

© 2017 Phyton, Inc. Microsystems and Development Tools

270

CPI2-B1 In-System Device Programmer

a+ Open for append; open (or create, if the file does not exist) for update at the end of file.

To specify that the given file is being opened or created in the text mode, append t to the value of
the type string (for example, rt or w+t).

Similarly, to specify the binary mode, append brb or w+b). If t or b is not given in the type string,
the mode is controlled by the _fmode global variable. If _fmode is set to O_BINARY, then files will
be opened in the binary mode. If _fmode is set to O_TEXT, then files will be opened in the text
mode.

Note. The O_* constants are defined in file system.h.

When a file is opened for update, both input and output can be done on the resulting stream;

howewer,

. output cannot be directly followed by input without intervening fseekor rewind;

. input cannot be directly followed by output without intervening fseek, rewind, or an input that
encounters end-of-file.

On successful completion freopen returns the argument stream. On error it returns NULL.

9.3.5.100 Function frexp

Declaration:
float frexp(float x, int exponent[]);
Description

The frexp function breaks up the floating-point number finto the normalized mantissa and exponent (the
integer power of number two), which is stored in the memory cell indicated by exp.
Returned value

The frexp returns the value of x such that xis the floating-point number in double format ranging from 0.5
to 1 or equal to 0, and the first argument of this function is equal to x multiplied by 2 raised to the power

exp.

9.3.5.101 Function fscanf

Declaration:

int fscanf(unsigned long stream, char format[], ...);
Description

Scans and formats input from a .

format. Finally, fscanf stores the formatted input at the address passed to it as the argument
following the format. The number of format specifiers and addresses must be the same as the
number of input fields.

1. Your arguments passed to this function shall match the format line. In case of mismatch, the
CPI2-B1 program may crash, because it cannot check the correspondence between the format
string and parameters passed. For details on format specifiers, see the scanf Format Specifiers.

2. All arguments for this function shall be arrays, because only the array parameters are passed by

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 271

address to functions. Also, see example for scanf.

fscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion on
possible causes.

Returned Value

fscanf returns the number of input fields successfully scanned, converted and stored. The return
value does not include the scanned fields that were not stored. If fscanf attempts to read at the
end-of-file, then EOF will be returned. If no fields are stored, then 0 will be returned.

9.3.5.102 Function fseek

Declaration:

int fseek(unsigned long stream, long offset, int fromwhere);
Description

Repositions a file pointer on a stream.

fseek sets the file pointer associated with stream to a new position that is offset bytes from the file
location given by fromwhereoffset should be O or the value returned by ftellfromwhere must be one
of the values 0. 1, or 2, which represent three symbolic constants (defined in system.h) as follows:

Constant fromwhere File location

SEEK_SET O Beginning of the file
SEEK_ CUR 1 Current file pointer position
SEEK_ END 2 End-of-file

fseek discards any character pushed back. fseek is used with stream I/O; for file handle I/O, use
Iseek. The next operation on the update file after fseek can be either input or output.

Returned Value

fseek will return O, if the pointer is successfully moved, and nonzero on failure. fseek may return 0
indicating that the pointer has been moved successfully, when in fact it has not been. This is
because DOS, which actually resets the pointer, does not verify the setting. fseek returns an error
code only on an unopened file or device. In the event of an error return, the errno global variable is
set to one of the following values:

EBADF Bad file pointer

EINVAL Invalid argument

ESPIPE lllegal seek on device

9.3.5.103 Function ftell

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

272 CPI2-B1 In-System Device Programmer

long ftell (unsigned | ong strean;
Description
Returns the current file pointer.

ftell returns the current file pointer for stream. The offsetis measured in bytes from the beginning of the
file (for the binaryfile). The value returned by ftell can be used in the subsequent call to fseek.

Returned Value

on success ftell returns the currentfile pointer position. It returns -1L on error and sets the errno global
variable to a positive value. In the event of error return, the errno global variable is setto one of the
following values:

EBADF Bad file pointer
ESPI PE I'l'l egal seek on device

9.3.5.104 Function fwrite

Declaration:

int fwite(void buf[], int size, int n, unsigned |ong strean;
Description

Writes to a stream.

fwrite appends n items of data of size bytes long each to the given output file. The data written begins at
buf. The total number of bytes written is (n * size). In the declarations, buf is an array object.

Returned Value
On successful completion fwrite returns the number of items (not bytes) actually written. On error it
returns a short count.

9.3.5.105 Function GetByte

Declaration:
unsi gned int CGetByte(unsigned |ong addr, int addr_space);
Description

Reads a byte from the specified address in the specified address space (the addr_space parameter).
Constants with the AS_ prefix for microcontroller memory areas (address spaces) are defined in the
system.h header file.

Returned value
The read byte.
Example
printf("%2X", CetByte(AS_DATA, O0x1F);

9.3.5.106 Function getc

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 273

int getc(unsigned long strean);
Description
Gets character from stream.

getc returns the next character on the given input stream and increments the stream's file pointer to point
to the next character.

Returned Value

On success, getc returns the character read, after converting it to an int without the sign extension. On the
end-of-file or error, it returns EOF.

9.3.5.107 Function getcurdir

Declaration:
int getcurdir(int drive, char directory[]);
Description

Writes the name of the current directory for the device specified in parameter drive (0 - current disk; 1 - A;
2 - B; ...) to parameter directory.

The received name does not contain the disk name and does not start with symbol \.
Returned value

0 will be returned, if the name is received successfully, and -1 otherwise

9.3.5.108 Function getcwd

Declaration:

voi d getcwd(char path[]);
Description

Gets the current working directory.

getcwd gets the full path name (including the drive) of the current working directory and stores itin buf.

9.3.5.109 Function getdate

Declaration:

void getdate(int date[]);

Description

Obtains the current computer date. The time information is stored in the date array:

date[0] - day(1...31)
date[1] - month (1...12)
date[2] - year

Example
int date[3];

© 2017 Phyton, Inc. Microsystems and Development Tools

274 CPI2-B1 In-System Device Programmer

get dat e(date);
printf("Date: %l/ %/ %", date[0], date[1l], date[2]);

9.3.5.110 Function getdfree

Declaration:

unsigned long getdfree(int drive);
Description

Gets disk free space.

getdfree accepts a drive specifier in drive (0 for default, 1 for A, and so on) and returns the disk free
space in bytes.

9.3.5.111 Function getdisk()

Declaration:
int getdisk();
Description

Gets the current drive number. getdisk gets the current drive number and returns an integer: O for
A, 1 for B, 2 for C, and so on.

9.3.5.112 Function getenv

Declaration:
int getenv(char nane[], char dest[]);
Description

Obtains the value of the name environment variable. The name should be in the upper case and should
not end with the equal sign (=). The variable value is copied to dest.

Returned value
1, if the specified variable is found; and 0 otherwise.
Example

char val ue[MAXPATH ;
get env(" COVSPEC', val ue);

9.3.5.113 Function GetFileName

Declaration:
voi d Cet Fil eName(char dest[]);
Description

Copies the name of the current Edit window to the dest array.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference

9.3.5.114 Function getftime

Declaration:

unsigned long getftime(long handle);

Description

Gets the file date and time.

275

getftime retrieves the file time and date for the disk file associated with the open handle. The return

value has the following format:
Bits

Value

0.4

two seconds

5...10 minutes

11...
16..
21..
25..

15

.20
.24
.31

hours
days
months

year - 1980

Returned Value

getftime returns the file date and time on success. In the event of an error, OXFFFFFFFF is

returned and the errno global variable is set to one of the following values:
EACCES

EBADF
EINVENC

Bad file number

9.3.5.115 Function GetLine

Declaration:

voi d GetLine(char dest[]);

Description

Copies the whole current line to the dest array.

9.3.5.116 Function GetMark

Declaration:

voi d Get Mark(int nunber);

Description

Retrieves the bookmark with the number number (1...10).

Permission denied

Invalid function number

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

276

CPI2-B1 In-System Device Programmer

9.3.5.117 Function GetMemory

Declaration:
voi d Get Menory(void dest[], int n, unsigned long addr, int addr_space);
Description

Reads n-byte memory block from the specified address in the specified memory area (the addr_space
parameter) to the dest array. Constants with the AS_ prefixfor microcontroller memory areas (address
spaces) are defined in the system.h header file.

Example
char array[20]; GetMenory(array, sizeof(array), 0x20, AS DATA);

9.3.5.118 Function GetScriptFileName

Declaration:

void GetScriptFileNane(char script_nanme[], char file_nane[]);

Description

GetScriptFileName copies to file_name the fully qualified path of the script file passed in script_name.

Each script has name containing 8 characters: the name of the script source file without path and
extension. The GetScriptFileName function retrieves the path to the source file.

Example:

char pat h[MAXPATH] ;
Get ScriptFileNane("test", path);

9.3.5.119 Function gettime

Declaration:

void gettine(int time[]);

Description

Obtains the current computer time. The time information is stored in the time array:

time[0] - hundredths of a second (0...99)
time[1] - seconds (0...59)

time[2] - minutes (0...59)

time[3] - hours (0...23)

Because the gettime function uses the system timer, you may expect a time error of about 52
milliseconds.

Example
int tinme[4];
while (1)
{
gettine(tine);
printf("Time: %l:%: %l. %", tine[3], tinme[2], tinme[l], tinme[O]);

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 277

9.3.5.120 Function getw

Declaration:

int getw(unsigned |long strean;
Description

Gets integer from stream.

getw returns the nextinteger in the specified input stream. Itassumes no special alignmentin the file.
getw should not be used, when the stream is opened in the text mode.

Returned Value
getw returns the next integer on the input stream. On the end-of-file or error, getw returns EOF.

Note. Because EOF is the allowed value for getw to return, feof or ferror should be used to detect the end-
of-file or error.

9.3.5.121 Function GetWindowHeight

Declaration:
i nt Get WndowHei ght (unsi gned | ong handl e);
Description
Obtains the height of the specified window user area.

The handle parameter is the window identifier produced by the call of the OpenWindow, and FindWindow
functions.

This function is useful, when itis necessaryto draw in the User window regardless of its size.

Returned value

The height of the specified window user area in pixels.

9.3.5.122 Function GetWindowWidth

Declaration:
int Get WndowW dt h(unsi gned | ong handl e);
Description
Obtains the width of the specified window user area.

The handle parameter is the window identifier produced by the call of the OpenWindow, and FindWindow
functions.

This function is useful, when itis necessaryto draw in the User window regardless of its size.

Returned value

The height of the specified window user area in pixels.

© 2017 Phyton, Inc. Microsystems and Development Tools

278

CPI2-B1 In-System Device Programmer

9.3.5.123 Function GetWord

Declaration:
unsi gned int GetWrd(unsigned |ong addr, int addr_space);
Description

Reads a word (16 bits) from the specified address in the specified memory area (the addr_space
parameter). Constants with the AS_ prefix for microcontroller memory areas (address spaces) are
defined in the system.h header file.

Returned value
The read word.
Example
printf("o@4x", GetWrd(AS DATA, Ox1F);

9.3.5.124 Function GetWord

Function GetWord

Declaration:

unsi gned int GetWyrd(unsigned |ong addr, int addr_space);
Description

Reads a word (16 bits) from the specified address in the specified memory area (the addr_space
parameter). Constants with the AS_ prefix for microcontroller memory areas (address spaces) are defined
in the system.h header file.

Returned value
The read word.
Example
printf("o@04x", GetWrd(AS_DATA, Ox1F);

9.3.5.125 Function GotoXY

Declaration:

void GotoXY(int col, int line);

Description

Set the cursor position. The cursor is moved to line number 'line' and column number ‘col".

Alternatively, to position the cursor, just assign values to the CurCol and CurLine built-in variables.

9.3.5.126 Function HStep

Declaration:
voi d HStep();
Description

Executes one high-level step. Calling this function makes sense onlyif a program containing the
character information is loaded. If no such program is loaded, then calling HStep will be equivalent to

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference

calling the Step function.

279

Note. The screen is not updated automatically after the HStep call. To organize automatic updates, use
the RedrawScreen function at the appropriate moment.

9.3.5.127 Function inport

Declaration:

unsi gned int inport(unsigned int port_numn;

Description
Reads a value (word) from the specified parallel
Returned value
The read word.
Example
unsi gned int val = inport(0x300);

9.3.5.128 Function inportb

Declaration:

unsi gned char inportb(unsigned int port_nun);

Description

port.

Reads a value (byte) from the specified parallel port.

Returned value
The read byte.
Example

unsi gned char val = inportb(0x3F8);

9.3.5.129 Function Inspect

Declaration:
unsi gned int |nspect(char name[]);

Description

Opens the Inspector window for the specified name (the name parameter).

9.3.5.130 Function InvertRect

Declaration:

voi d I nvertRect (unsigned | ong handl e,

int x1,

int yl,

int x2,

int

y2);

© 2017 Phyton, Inc. Microsystems and Development Tools

280

CPI2-B1 In-System Device Programmer

Description

Inverts colors within a rectangular area; (x1, yl1) are the coordinates of the upper left corner, (X2, y2) are
the coordinates of the lower right corner.

9.3.5.131 Function isalnum

Declaration:

int isal nununsigned char c);

Description

The isalnum function checks, whether parameter c is a Latin alphabet letter or a digit ('A-'Z', 'a'-'Z, or
'0-'9").

Returned value

The isalnum function will return a non-zero value, if c is an alphabetic character or a digit, and will return 0
otherwise.

9.3.5.132 Function isalpha

Declaration:

i nt isal pha(unsi gned char c);

Description

The isalpha function checks, if parameter c is a Latin alphabet character (‘'A-'Z', or 'a’-'z).
Returned value

The isalpha function will return a non-zero value, if c is an alphabetic character, otherwise it will return 0.

9.3.5.133 Function isascii

Declaration:

int isascii(unsigned char c);

Description

The isascii function checks, if parameter c is an ASCII character.
Returned value

The isascii function will return a non-zero value, if the value of c is greater than or equal to 0 butless than
128.

9.3.5.134 Function isatty

Declaration:

int isatty(long handle);
Description

Checks for device type.

isatty determines, whether handle is associated with any one of the following character devices:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 281

term na
consol e
printer
serial port

SR I O)

Returned value

If the device is one of the four character devices listed abowve, then isatty returns a nonzero integer.
Otherwise, isatty returns 0.

9.3.5.135 Function iscntrl

Declaration:

int iscntrl (unsigned char c);

Description

The iscntrl function checks, if parameter c is a control character (from 0x00 to Ox1F, or OX7F).
Returned character

The iscntrl function will return a non-zero value, if c is a control character or digit, otherwise it will return 0.

9.3.5.136 Function isdigit

Declaration:
int isdigit(unsigned char c);
Description
The isdigit function checks, if parameter c is a decimal number ('0'-'9").
Returned value

The isdigit function will return a non-zero value, if parameter c is a decimal number, otherwise it will
return 0.

9.3.5.137 Function isgraph

Declaration:

int isgraph(unsigned char c);

Description

The isgraph function checks, if parameter c is a printed character excluding spaces (0x21 - OX7E).
Returned value

The isgraph function will return a non-zero value, if ¢ is a printed character, otherwise it will return 0.

9.3.5.138 Function islower

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

282

CPI2-B1 In-System Device Programmer

int islower(unsigned char c);

Description

The islower function checks, if parameter c is a lower case letter (‘a’-'z).
Returned value

The islower function will return non-zero value, if c is a lower case character, otherwise it will return 0.

9.3.5.139 Function isprint

Declaration:

int isprint(unsigned char c);

Description

The isprint function checks, if parameter c is a printed character (0x20 - OX7E).
Returned value

The isprint function will return a non-zero value, if c is an alphabetic character or a digit, otherwise it will
return 0.

9.3.5.140 Function ispunct

Declaration:
i nt ispunct(unsigned char c);
Description

The ispunct function checks, if parameter cis a punctuation symbol of the following set:

! " # $ % & ' (
) * + , - . / :
: < = > ? [\
] ~o { | } ~

Returned value

The ispunct function will return a non-zero value, if c is a punctuation symbol, otherwise it will return 0.

9.3.5.141 Function isspace

Declaration:

int isspace(unsigned char c);

Description

The isspace function checks, if parameter c is a space character (0x09 - 0xOD or 0x20).
Returned function

The isspace function will return a non-zero value, if c is a space character, otherwise it will return 0.

9.3.5.142 Function isupper

Declaration:
i nt isupper(unsigned char c);

Description

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 283

The isupper function checks, if parameter c is an upper case letter (‘A-'Z).
Returned value

The isupper function will return a non-zero value, if c is an upper case letter, otherwise it will return 0.

9.3.5.143 Function isxdigit

Declaration:

int isxdigit(unsigned char c);

Description

The isxdigit function checks, if parameter c is a hexadecimal number (‘A-'F, 'a’-'f, '0'-'9").
Returned value

The isxdigit function will return a non-zero value, if parameter c is a hexadecimal number, otherwise it will
return 0.

9.3.5.144 Function itoa

Declaration:
void itoa(int value, char string[], int radix);
Description

Converts an integer number (value) into the character string (string). The radix parameter is the radix of
notation (2...36), in which the conversion is carried out.

9.3.5.145 Function LastChar

Declaration:

int Last Char (unsigned | ong handl e);

Description

Returns the code of the button pressed at the last call of wgetchar or the hexadecimal number entered at
the last call of wgethex.

9.3.5.146 Function LastEvent

Declaration:
i nt Last Event (unsigned | ong handl e);
Description

Returns the type of the latest event that occurred to the window and is accessed by the WaitWindowEvent
function.

Returned value
The type of event (constants are defined in system.h):

WE_REDRAW is the window data update request, an image display request. This eventis generated in
all those cases, when itis necessaryto update the window, for example, at the Windows task switch.
This eventinforms you that the window wishes to redraw itself, and your script file, generally speaking,
does not have to respond to this event. If the script file does not update the window data, the old picture

© 2017 Phyton, Inc. Microsystems and Development Tools

284 CPI2-B1 In-System Device Programmer

will be drawn.

WE_MOUSEBUTTON (onlythe User window) - You clicked a mouse button, when the mouse cursor was
in the window. Information on the click can be obtained by calling the LastEventlntx function:

- LastEventintl() and LastEventInt2() return the coordinates in pixels (x, y) for the point, where the
cursor was located, when the button was clicked.
- LastEventint3() and LastEventint4() return the text coordinates (x, y) for the point, where the cursor

was located, when the button was clicked; xis the column number; yis the line number.

WE_USERBUTTON (only the User window) You clicked one of the buttons added to the window by the
AddButton function. The LastEventintl() function returns identifier of the clicked button. It equivalent to the
button identifier returned by the AddButton function.

WE_TOOLBARBUTTON (only the User window) You clicked one of the 0...F buttons on the window
toolbar. These buttons are particularly intended for simple interactions with the window. Using the
customer buttons (see AddButton) is more complicated, although itis more flexible.

WE_CHAR - (onlythe I/O Stream window) You pressed an alphanumeric key on the keyboard.
LastEventintl() returns its code.

WE_CLOSE - You closed the window. After that, further window operation is useless and should be
stopped.

9.3.5.147 Function LastEventInt{1...4}

Declaration:

int LastEventInt{1l...4}(unsigned |ong handle);

Description

Four functions - LastEventintl(), LastEventint2(), LastEventInt3(), and LastEventint4() - return parameters
that are generated upon event occurrence in a user window. See LastEvent, WaitWindowEvent.

9.3.5.148 Function LastString

Declaration:
int LastString(unsigned |ong handle, char s[]);
Description

Copies the string entered at the last call of wgetstring to the string (the s parameter).

9.3.5.149 Function LineTo

Declaration:
voi d LineTo(unsigned long handle, int x, int y);
Description

Draws a line from the point set up by the MoveTo or LineTo function to the point with coordinates (x, y).
The line is drawn with the pen selected with the SelectPen function (or a standard pen, when SelectPen
was not called). After the LineTo call, the benchmark is moved to the destination point.

Example

/1 To draw triangl e ABC
MoveTo(handl e, 10, 10); // point A
Li neTo(handl e, 50, 50); // A-->B

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 285

Li neTo(handl e, 20, 40); // B-->C
Li neTo(handl e, 10, 10); // C--> A

9.3.5.150 Function LoadDesktop

Declaration:
voi d LoadDesktop(char file_nane[]);
Description

Downloads the specified screen configuration file (see Configuration Files).

9.3.5.151 Function Left

Declaration:
void Left(int count=1);
Description

Move the cursor count positions left. The same result can be achieved by decrementing the CurCol built-
in variable.

9.3.5.152 Function LoadLibrary

Declaration:
unsi gned | ong LoadLi brary(char lib_nane[]);
Description

Loads the specified DLL by calling the LoadLibrary function of Windows API. After the loading, the
functions from this DLL can be called with the CallLibraryFunction.

Returned value

Whatis returned bythe LoadLibrary function of Windows API, thatis, HINSTANCE of the loaded DLL or
error code.

Example
unsi gned | ong instance = LoadLi brary("EXTEND. DLL");

9.3.5.153 Function LoadOptions

Declaration:
voi d LoadOptions(char file_nane[]);
Description

Downloads the specified option file (see Configuration Files).

9.3.5.154 Function LoadProgram

Declaration:

voi d LoadProgran(unsi gned char file_name[], int format, int addr_space=AS_CCDE,
unsi gned | ong start_addr=0);

© 2017 Phyton, Inc. Microsystems and Development Tools

286 CPI2-B1 In-System Device Programmer

Description
Downloads a program into the microcontroller memory.
Parameters:

file_name - the nane of the |oaded file.
f or mat - the format of the |oaded file. Character constants with the
prefix LF_ declared in the systemh header file
are provided for this paranmeter. To understand this
better, open the Load Program di al og
and see the list of fornats.
addr _space - the m croprocessor address space, where the programis downl oaded
(the code nmenory by default).
start_addr - the |load address. This paraneter is used only for |oading
a file that is the binary nenory inage.

Not only programs can be loaded: you can also load data memoryimages that were saved, for example,
with the SaveData function.

Example
LoadPr ogran(" C.\\ PROG \ TEST. D32", LF_UBROF);

9.3.5.155 Function LoadProject

Declaration:

voi d LoadProj ect(char file_name[]);

Description

Loads the project with the specified name. If no extension is specified, then ".IDE' will be assumed.

<%CM%> will perform the same actions as if the project were loaded via menu.

9.3.5.156 Function locking

Declaration:

int |ocking(long handle, int cnd, long | ength);
Description

Sets or resets file-sharing locks.

locking provides interface to the operating system file-sharing mechanism. handle specifies the opened
file to be locked or unlocked. The region to be locked or unlocked starts at the current file position, and is
length bytes long. Locks can be placed on arbitrary, nonoverlapping regions of anyfile. Aprogram
attempting to read or write into the locked region will retry the operation three times. If all three retries fail,
the call fails with an error. cmd specifies the action to be taken:

0 Unl ock the region, which nust have been previously | ocked.

1 Lock the region. If the lock is unsuccessful, try once a second for 10
seconds before giving up.

2 Lock the region. If the lock if unsuccessful, give up imediately.

Returned Value

On successful operations, locking returns 0. Otherwise, itreturns -1 and the errno global variable is set
to one of the following values:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 287

EACCES File already | ocked or unl ocked

EBADF Bad file nunber

EDEADL OCK File cannot be | ocked after 10 retries (cmd is LK LOCK or LK RLCK)
El NVAL Invalid cnd, or SHARE. EXE not | oaded

9.3.5.157 Function log

Declaration:

float log(float x);

Description

The log function calculates the natural logarithm of the floating-point number val.
Returned function

The log function returns the natural logarithm of val. If val is negative or equal to O, then the function will
return _MINUS_INF.

9.3.5.158 Function log10

Declaration:

float log(float x);

Description

The log function calculates the natural logarithm of the floating-point number val.
Returned Value

The log function returns the natural logarithm of val. If val is negative or equal to 0, then the function
will return _MINUS_INF.

9.3.5.159 Function Iseek

Declaration:

long Iseek(long handle, long offset, int fromwhere);
Description

Movwes file pointer.

Iseek sets the file pointer associated with handle to a new position, which is offset bytes beyond
the file location specified by fromwhere. fromwhere must be one of the following symbolic constants
(defined in system.h):

SEEK_CUR Current file pointer position
SEEK_END End-of-file
SEEK_SET File beginning

Returned Value

Iseek returns the offset of the pointer new position measured in bytes from the file beginning. Iseek

© 2017 Phyton, Inc. Microsystems and Development Tools

288 CPI2-B1 In-System Device Programmer

returns -1L on error, and the errno global variable is set to one of the following values:
EBADF Bad file handle

EINVAL Invalid argument

ESPIPE lllegal seek on device

For the devices incapable of seeking (such as terminals or printers), the return value is undefined.

9.3.5.160 Function ltoa

Declaration:

void Itoa(long value, char string[], int radix);
Description

Converts a long integer number (value) into the character string (string).

The radix parameter is the radix used for conversion (2...36).

9.3.5.161 Function MaxAddr

Declaration:
unsi gned | ong MaxAddr (i nt addr_space);
Description

Returns the upper boundary address of the processor address space. Constants with the AS_ prefix for
the addr_space parameter are defined in the system.h header file.

Example
See MinAddr

9.3.5.162 Function memccpy

Declaration:

int nmenccpy(void dest[], void src[], int ¢, int n, int dest_index=0, int
src_i ndex=0) ;

Description

The memccpy function copies the contents of the scr memory block to the dest memory block. Copying
stops, when either byte with the value of ¢ is encountered and copied or when c bytes are copied.

Returned value

The memccpy function returns the number of copied bytes.

9.3.5.163 Function memchr

Declaration:

int nmenchr(void s[], int ¢, int n, int index=0);

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 289

Description

The memchr function searches for the first entry of character ¢ (which was earlier converted into the
unsigned char) among the first n characters (interpreted as the unsigned char) of the object specified by
S.

Returned value

The memchr function returns the number of the found byte counting from the beginning of the array, or -1,
if the byte is not found

9.3.5.164 Function memcmp

Declaration:
int mencnp(void s1[], void s2[], int n, int sl _index=0, int s2_index=0);
Description

The memcmp function compares the first n bytes of objects s1 and s2 and returns the comparison
result. The bytes are interpreted as the unsigned char.

Resul t Meani ng

<0 sl is less than s2
=0 butl is equal to s2
>0 sl is greater than s2

Returned value

The memcmp function returns the positive, negative, or zero value depending on the result of comparing
the first n bytes of objects s1 and s2.

9.3.5.165 Function memcpy

Declaration:
voi d nencpy(void dest[], void src[], int n, int dest_index=0, int src_index=0);
Description

The memcpy function copies n bytes from the buffer specified by scr to the buffer specified by dest. If
these buffers have common memory cells (thatis, they overlap), then the memcpy function does not
ensure that byte copying is executed correctly. If overlapping is possible, then use the memmove function
instead.

Returned value

None.

9.3.5.166 Function memicmp

Declaration:
int memcnp(void s1[], void s2[], int n, int sl index=0, int s2_index=0);
Description

The memicmp function compares the first n bytes of objects s1 and s2 regardless of the character case,
and returns the comparison result. The bytes are interpreted as the unsigned char.

Resul t Meani ng

© 2017 Phyton, Inc. Microsystems and Development Tools

290 CPI2-B1 In-System Device Programmer

<0 sl is less than s2
=0 butl is equal to s2
>0 sl is greater than s2

Returned value

The memicmp function returns the positive, negative or zero value, depending on the result of comparing
the first n bytes of objects s1 and s2.

9.3.5.167 Function memmove

Declaration:
voi d nermove(void dest[], void src[], int n, int dest_index=0, int src_index=0);
Description

The memmove function copies n bytes from the buffer specified by scr to the buffer specified by dest.
When these buffers have common memory cells (thatis, they overlap), the memmove function ensures
that bytes are copied correctly.

Returned value

None.

9.3.5.168 Function memset

Declaration:
void nenmset (void s[], int c, int n, int index=0);
Description

The memset function sets the first n bytes of the object, specified by s, equal to the value transferred to ¢
(and converted into the unsigned char).

Returned value

None.

9.3.5.169 Function MessageBox

Declaration:
int MessageBox(char format[], ...);
Description

The MessageBox function displays data in accordance with the format line in the form of a dialog
message.

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the <%
CM%> program may crash, because it cannot check the correspondence between the format string and
parameters passed.

Returned value
1, ifthe Close button is pressed,;
0, ifthe Esc keyis pressed.

Also, see:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 291

Formatted Input-Output Functions

Alphabetical List of Script Language Built-in Functions and Variables

9.3.5.170 Function MessageBoxEx

Declaration:
int MessageBoxEx(int flags, char title[], char format[], ...);
Description

This function displays data in accordance with the format line in the form of a dialog message. The
dialog has title, buttons and icon, which are specified by flags and title.

The flags parameter may contain one or several flags that determine the dialog buttons and icon. For
these flags, file system.h defines constants with the MB_ prefix.

The title parameter is the textin the dialog title bar.
The format parameter is the format string, it may be followed by data (see printf).

Note. Your arguments passed to this function shall match the formatline. In case of mismatch, the <%
CM%> program may crash, because it cannot check the correspondence between the format string and
parameters passed.

Returned value

The function returns one of constants with the ID prefix determined in system.h, which corresponds the
dialog button pressed.

Example:
i f (MessageBoxEx(MB_YESNO | MB_| CONQUESTIQN, "Confirmexit", "Do you want to
exit?") == | DYES)

Exi t Program();
Also, see:
Formatted Input-Output Functions
Alphabetical List of Script Language Built-in Functions and Variables

9.3.5.171 Function MinAddr

Declaration:
unsi gned | ong M nAddr (i nt addr_space);
Description

Returns the lower boundary address of the processor address space. Constants with the AS_ prefix for
the addr_space parameter are defined in the system.h header file.

Example
/] To set the whole data nenory to zero
int i;
for (i = MnAddr(AS_DATA), i <= MaxAddr (AS_DATA); i ++)
Set Byte(i, AS_DATA, 0);

9.3.5.172 Function mkdir

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

292

CPI2-B1 In-System Device Programmer

int nkdir(char path[]);

Description

Creates a directory. mkdir creates a new directory from the given path name path.
Returned Value

mkdir will return O, if the new directory is created.

The returned value of -1 indicates an error and the errno global variable contains one of the following
values:

EACCES Permission denied
ENOENT No such file or directory

9.3.5.173 Function MoveTo

Declaration:
voi d MoveTo(unsigned |ong handle, int x, int y);
Description

Sets up the coordinates of the start point of the line to be drawn with the LineTo function.

Examples

/!l To draw a line fromthe point with coordi nates (10, 10) to the point (50,
50).

MoveTo(handl e, 10, 10);

Li neTo(handl e, 50, 50);

9.3.5.174 Function MoveWindow

Declaration:
voi d MoveW ndow(unsi gned | ong handle, int x, int y);
Description

Moves the specified window. The handle parameter is the window identifier produced by the call of the
OpenWindow, and FindWindow functions. x and y are the new coordinates (in pixels) of the window
upper left corner in the user area of the <% CM%> window. Coordinates 0, 0 correspond to the window
upper left corner.

The window size does not change.

9.3.5.175 Function movmem

Declaration:

voi d nmovren{void dest[], void src[], unsigned int length, int dest_index=0, int
src_i ndex=0) ;

Description

The movmem function copies length bytes from the buffer specified by scr to the buffer specified by dest.
When these buffers have common memory cells (thatis, they overlap), the movmem function ensures
that byte are copied correctly.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 293

Returned value

None.

9.3.5.176 Function open

Declaration:
int open(char path[], int access);
Description
Opens a file for reading or writing.

open opens the file specified by path and prepares it for reading and/or writing as determined by the
value of access. To create a file in a particular mode, you can either assign to the _fmode global
variable or call open with the O_CREAT options ORed with the translation mode desired. For
example, the call:

open("XMP", O_CREAT | O_BINARY);

creates a binary-mode file named XMP, truncating its length to O bytes, if it already exists. For

open, access is constructed by performing the bitwise OR with the flags from the following list.

Only one flag from the first list can be used (and one must be used); the remaining flags can be
used in any logical combination. These symbolic constants are defined in system.h.

Read/Write Flags:

O_RDONLY Open for reading only.
O_VRONLY Open for writing only.
O_RDWR Open for reading and witing

Returned Value

On success, open returns a nonnegative integer (the file handle). The file pointer, which marks the
current position in the file, is set to the beginning of the file. On error, open returns -1 and the errno
global variable is set to one of the following values:

EACCES Perm ssi on deni ed

El NVACC Invalid access code

EMFI LE Too many open files
ENOCENT No such file or directory

9.3.5.177 Function OpenEditorWindow

Declaration:

unsi gned | ong QpenEdi t or Wndow(char file_nange[]);
Description

Opens the Source window and loads the specified file into it.

If the window with the specified file is already opened, it will become active and the new window will not
be opened.

© 2017 Phyton, Inc. Microsystems and Development Tools

294 CPI2-B1 In-System Device Programmer

9.3.5.178 Function OpenStreamWindow

Declaration:
unsi gned | ong QpenStreamW ndow(char title[]);
Description

Opens the I/O Stream window window and sets up its title (the title parameter).

You can do the same with the OpenWindow function, by transferring the WIN_STREAM constantto itas a
parameter, however in this case, you cannot set up the title.

If there is an "unowned" stream window on the screen, the new window will not be opened and the
already opened window will be used.

The new window opens in a random place on the screen and has certain preset size. To resize the
window, use the SetWindowSize function, or do it manually.

Returned value

The identifier of opened window. It can be transferred to other window operation functions as a
parameter.

Example
unsi gned | ong handl e = QpenStream ndow("Serial port 1/Q");

9.3.5.179 Function OpenUserWindow

Declaration:

unsi gned | ong QpenUser W ndow(char title[]);
Description

Opens the User window and specifies its title (parameter title).

This can also be done with the OpenWindow function, by transferring the WIN_USER constanttoitas a
parameter, however in this case, you cannot specify the title.

If there is an unowned user window opened on the screen, a new window will not be opened and the
current window will be used.

Anew window is opened in a random screen location and has the preset size. To resize the window, use
the SetWindowsSize function or do it manually.

Returned value

The identifier of the opened window. It can be transferred as a parameter to other window operation
functions.

Example
unsi gned | ong handl e = CpenUser Wndow(" A/ D conversion");

9.3.5.180 Function OpenWindow

Declaration:
unsi gned | ong QpenW ndow(i nt type);
Description

Opens the specified window type (disassembler, dump, etc.). The constants to describe the window
types are declared in the system.h header file:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 295

W N_CONSOLE - Consol e

W N_DuUwP - Menory Dunp
W N_AUTO WATCHES - Aut oWt ches
W N_I NSPECT - Inspector

W N_SF_SOURCE - Script source
W N_STREAM - 1/ O stream

W N_USER - User wi ndow

The View menu gives access to the available windows.

The window will be opened, if an instruction of the View menu is executed. If you need to move a window
and/or change its size, use the SetWindowSize, SetWindowsSizeT, or MoveWindow functions.

Returned value

The identifier of the opened window. It can be transferred as a parameter to other window operation
functions.

For Windows programmers: identifier is a window HWND.

9.3.5.181 Function outport

Declaration:
voi d outport(unsigned int port_num unsigned int value);
Description

Writes a value (word) to the specified parallel port.

9.3.5.182 Function outportb

Declaration:
voi d outportb(unsigned int port_num unsigned char val ue);
Description

Write a value (byte) to the specified parallel port.

9.3.5.183 Function peek

Declaration:

int peek(unsigned int segnent, unsigned int offset);

Description

Reads a word from computer memory by a specified segment: offset. The segmentis a selector.
Returned value

The read word.

9.3.5.184 Function peekb

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

296 CPI2-B1 In-System Device Programmer

unsi gned char peekb(unsigned int segnent, unsigned int offset);

Description

Reads a byte from the computer memory by a specified segment.offset. The segmentis a selector.
Returned value

The read byte.

9.3.5.185 Function poke

Declaration:
voi d poke(unsigned int segnent, unsigned int offset, int value);
Description

Writes a word to the computer memory by a specified segment: offset. The segmentis a selector.

9.3.5.186 Function pokeb

Declaration:
voi d pokeb(unsigned int segment, unsigned int offset, unsigned char val ue);
Description

Writes a byte to the computer memory by specified segment: offset. segmentis a selector.

9.3.5.187 Function Polyline

Declaration:
voi d Pol yline(unsigned | ong handl e, unsigned int points[], int n);
Description

Connects the points, whose coordinate pairs are transferred in the points array, with a line. The n
parameter is the amount of points. Each subsequent horizontal coordinate should be greater than the
previous one.

Example
Pol yl i ne(handl e, { 0, O,
10, 20,
12, 30,
78, 10}, 4);

9.3.5.188 Function pow

Declaration:

float pow(float x, float y);
Description

The pow function raises xto the powery.
Returned function

The pow function returns the result of raising x to the power y. If yis equal to 0, then the function will return
1.0. If x==0 and y < 0, then the error will occur (falling outside the range) and the function will return 0. If x
<0 and yis notan integer, then the error of falling outside the range will also occur and the pow function

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 297

will return 0.

9.3.5.189 Function pow10

Declaration:

float powlO(int x);

Description

The pow10 function raises number 10 to the power x.
Returned value

The pow10 function returns the result of raising 10 to the power x. If xis 0, then the function will return 1.0.

9.3.5.190 Function printf

Declaration:
void printf(char format[], ...);
Description

The printf function displays the values of transferred parameters in the Console in accordance with
the format line.

Upon every printf access, data is displayed in the new window line, thatis, "\n" is automatically added to
the displayed string.

If the Console window is already opened, it will be automatically opened.

The wprintf function provides more capabilities for the formatted output, but it requires certain preparatory
operations.

Note. Your arguments passed to this function shall match the format line. In case of mismaitch, the CPI2-
B1 program may crash, because it cannot check the correspondence between the format string and
parameters passed.

For more info, see:
Format String
Format Specifiers
Flag Characters
Width Specifiers

Precision Specifiers

Input-size Modifiers

Tvpe Characters
Format Specifier Conventions

Returned Value
Her.

Example
printf("Counter = %d\n"

© 2017 Phyton, Inc. Microsystems and Development Tools

298 CPI2-B1 In-System Device Programmer

"Value

= %08IX",

Counter, Value);

9.3.5.190.1 printf Conversion Type Characters

The information in this table is based on the assumption that no flag characters, width specifiers,
precision specifiers, or input-size modifiers were included in the format specifier.

Note. Certain accompany some of these format specifiers.

Type Char
Numerics
d

E

G
Characters
c

s

%

Expected Input

Integer
Integer
Integer
Integer
Integer
Integer
Floating-point
Floating-point

Floating-point

Floating-point

Floating-point

Character
String pointer

None

Format of output

signedinteger
signed decimal integer
unsigned octal integer
unsigned decimal integer
unsigned hexadecimal int (with a, b, c, d, e,).
unsigned hexadecimal int (with A, B, C, D, E, F).
signed value of the form [-]dddd.dddd.
signed value of the form [-]d.dddd or [+/-]ddd

signed value in either ef form, based on given value and
precision. Trailing zeros and the decimal point are printed if
necessary.

Same as e; with E for exponent.
Same as g; with E for exponent if e format used.

Single character.

Prints the % character.

Infinite floating-point numbers are printed as +INF and -INF.
An IEEE Not-A-Number is printed as +NAN or -NAN.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 299

9.3.5.190.2 printf Flag Characters

The Flag characters can appear in any order and combination.
Flag Description

- Left-justifies the result, pads on the right with blanks. If not given, it right-justifies the
result, pads on the left with zeros or blanks.

+ Signed conwversion results always begin with a plus (+) or minus (-) sign.

blank If value is nonnegative, the output begins with a blank instead of a plus; negative
values still begin with a minus.

Specifies that arg is to be converted using an alternate form.

Note. Plus (+) takes precedence over blank () if both are given

9.3.5.190.3 printf Format Specifier Conventions

Certain conventions accompany some of the printf format specifiers for the following conversions:
- %e or %E

- %f

- %qg or %G
- %x or %X

Note. Infinite floating-point numbers are printed as +INF and -INF. An IEEE Not-a-Number is printed
as +NAN or -NAN.

9.3.5.190.3.1 %e or %E Conversions

The argument is converted to match the style

[1] d.ddd...e[+/-]ddd

where:

. one digit precedes the decimal point

« the number of digits after the decimal point is equal to the precision;
. the exponent always contains at least two digits.

9.3.5.190.3.2 %f Conversions

The argument is converted to decimal notation in the style
[-] ddd.ddd...

where the number of digits after the decimal point is equal to the precision (if a non-zero precision
was given).

© 2017 Phyton, Inc. Microsystems and Development Tools

300 CPI2-B1 In-System Device Programmer

9.3.5.190.3.3 %g or %G Conversions

The argument is printed in style e, E or f, with the precision specifying the number of significant
digits.
Trailing zeros are removed from the result, and a decimal point appears only if necessary.

The argument is printed in style e or f (with some restraints) if g is the conversion character. Style
e is used only if the exponent that results from the conversion is either greater than the precision or
less than —4.

The argument is printed in style if G is the conversion character.

9.3.5.190.3.4 %x or %X Conversions
For x conwersions, the letters a, b, ¢, d, e, and f appear in the output.
For X conwersions, the letters A, B, C, D, E, and F appear in the output.

9.3.5.190.3.5 Alternate Forms for printf Conversion

If you use the # flag conversion character, it has the following effect on the argument (arg) being

conwerted:

Convwersion character How # affects the argument

csdiu No effect.

0 0 is prepended to a nonzero arg.

X X 0x (or 0X) is prepended to arg.

eEf The result always contains a decimal point even if no digits
follow the point. Normally, a decimal point appears in
these results only if a digit follows it.

gG Same as e and E, except that trailing zeros are not removed.

9.3.5.190.4 printf Format Specifiers

The printf format specifiers have the following form:
% [flags] [width] [.prec] [FIN|h|I|L] type_char

Each format specifier begins with the percent character (%). After the % come the following
optional specifiers, in this order:

Optional Format String Components

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 301

These are the general aspects of output formatting controlled by the optional characters, specifiers,
and modifiers in the format string:

Component Optional/Required
[flags] (Optional) Flag character(s) Output justification, numeric signs,
decimal points, trailing zeros, octal and hex prefixes.
[width] (Optional) Width specifier Minimum number of characters to print,
padding with blanks or zeros.
(Optional) Precision specifier Maximum number of characters to
print; for integers, minimum number of digits to print.
[FIN[h[IIL] (Optional) Input size modifier Override default size of next input
argument:H = short int
L = long
L = long double
type_char (Required) Conversion-type character.

9.3.5.190.5 printf Format String

The format string shall be present in each of the printf function calls. It controls how each function
will convert, format, and print its arguments. The format string is a character string that contains
two types of objects:

. Plain characters are copied verbatim to the output stream.

. Conwersion specifications fetch arguments from the argument list and apply formatting to them.

Plain characters are just copied verbatim to the output stream. Conwversion specifications fetch
arguments from the argument list and apply formatting to them.

Note. There must be enough arguments for the format; if not, the results will be unpredictable and
possibly disastrous. Excess arguments (more than required by the format) are ignored.

9.3.5.190.6 printf Input-size Modifiers

These maodifiers determine how printf functions interpret the next input argument, arg[f].

Modifier Type of arg arg is interpreted as ...

F p, S, A far pointer

N and n) A near pointer (Note. N cannot be used with any
conwersion in the huge model.)

h diouxX A short int

I diouxX A long int

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

302

CPI2-B1 In-System Device Programmer

eEfgG A double
L eEfgG A long double

arg.

Both F and N reinterpret the input variable arg. Normally, the arg for a p, %s, or n conversion is a
pointer of the default size for the memory model.

h, I, and L override the default size of the numeric data input arguments. Neither h nor | affects
character (c,s) or pointer () types.

9.3.5.190.7 printf Precision Specifiers

The printf precision specifiers set the maximum number of characters (or minimum number of
integer digits) to print. A printf precision specification always begins with a period (".") to separate it
from any preceding width specifier.

Then, like the width specifier, precision is specified in one of two ways:
. directly, through a decimal digit string;
. indirectly, through an asterisk (*).

If you use an * for the precision specifier, the next argument in the call (treated as an int) specifies
the precision.

If you use asterisks for the width or the precision, or for both, the width argument must immediately
follow the specifiers, followed by the precision argument, then the argument for the data to be
conwerted.

[.prec] How Output Precision Is Affected

(none) Precision set to default:
= 1 for d,i,,u,x, X types;
= 6 for e,E,f types;
= All significant digits for g,G types;
= Print to first null character for s types;
= No effect on types.

.0 For d,i,o,u,x types, precision set to default.
for e,E,f types, no decimal point is printed.
.n n characters or n decimal places are printed.

If the output value has more than n characters, the output might be truncated or
rounded. (Whether this happens depends on the type character.)

The argument list supplies the precision specifier, which must precede the
actual argument being formatted.

No numeric characters will be output for a field (i.e., the field will be blank) if the following
conditions are all met:

. you specify an explicit precision of 0;

. the format specifier for the field is one of the integer formats (d, i, o, u, or x);

. the value to be printed is 0

How [.prec] Affects Conwversion
Char Type Effect of [.prec] (.n) on Conversion

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 303

Specifies that at least n digits are printed.
n digits,

output value is left-padded x with zeros.

If input argument has more than n digits,
the output value is not truncated.

X c o T a

Specifies that n characters are
printed after the decimal point, and
the last digit printed is rounded.

- m o

Specifies that at most n significant
digits are printed.

o«

c Has no effect on the output.
S Specifies that no more than n characters are printed.

9.3.5.190.8 printf Width Specifiers

The width specifier sets the minimum field width for an output value. Width is specified in one of

two ways:
. directly, through a decimal digit string;
. indirectly, through an asterisk (*).

If you use an asterisk for the width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.

Nonexistent or small field widths do cause truncation of a field. If the result of a conversion is wider
than the field width, the field is expanded to contain the conversion result.
Width specifier How output width is affected

n At least n characters are printed. If the output value has less than n
characters, the output is padded with blanks (right-padded if - flag given, left-
padded otherwise).

on At least n characters are printed. If the output value has less than n
characters, it is filled on the left with zeros.
* The argument list supplies the width specifier, which must precede the

actual argument being formatted.

9.3.5.191 Function pscanf

Declaration:

int pscanf(char title[], char format(], ...);

© 2017 Phyton, Inc. Microsystems and Development Tools

304 CPI2-B1 In-System Device Programmer

Description

performs the same as scanf; howe\er, it receives an additional parameter, the header of the prompt
dialog box.

pscanf scans a series of input fields one character at a time reading from a stream. After that, each
field is formatted in accordance with a format specifier passed to pscanf in the format string pointed
to by format. Finally, pscanf stores the formatted input at the address passed to it as the argument
following the format. The number of format specifiers and addresses must be the same as the
number of input fields.

Notes
1. scanf Format Specifiers.
2. All arguments for this function shall be arrays, because only the array parameters are passed

by address to functions. Also, see example for scanf.

pscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion on
possible causes.

Returned Value

pscanf returns the number of input fields successfully scanned, converted and stored. The return
value does not include the scanned fields that were not stored. If no fields are stored, then 0 will be
returned.

9.3.5.192 Function putc

Declaration:

int putc(int c, unsigned long stream);

Description

Outputs a character to a stream.

putc outputs character c¢ to the stream specified by stream.

Returned Value

On success, putc returns the character printed, c. On error, putc returns EOF.

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 305

9.3.5.193 Function putenv

Declaration:

int putenv(char name[]);

Description

Sets up the value of the environment variable. Here, is a string like:
"COMSPEC=C:\\COMMAND.COM"

Returned value

1, if the value of specified variable is set up; otherwise it returns 0.

9.3.5.194 Function putw

Declaration:

int putw(int c, unsigned long stream);

Description

Puts an integer on a stream.

putw outputs integer ¢ to the given . putw neither expects nor causes special alignment in the file.
Returned Value

On success, putw returns integer c. On error, putw returns EOF. Because EOF is the allowed
integer, use ferror to detect errors with putw.

9.3.5.195 Function rand

Declaration:
int rand();

Returns a pseudorandom number in the range from 0 to 32767.

9.3.5.196 Function random

Declaration:

int random(int num);
Description

-1.

9.3.5.197 Function randomize

Declaration:
woid randomize();
Description

Initializes a random number generator by a random number.

© 2017 Phyton, Inc. Microsystems and Development Tools

306 CPI2-B1 In-System Device Programmer

9.3.5.198 Function read

Declaration:

int read(long handle, woid buff], int len);
Description

Reads from file.

read attempts to read len bytes from the file associated with handle into the buffer pointed to by
buf. For a file opened in text mode, then read removes the carriage returns and reports the end-of-
file, when it reaches Ctrl-Z. The handle file handle is obtained from the creat, open, dup, or dup2
call. On disk files, read begins reading at the current file pointer. When the reading is complete, it
increments the file pointer by the number of bytes read. On devices, the bytes are read directly
from the device.

Returned Value

On successful completion, read returns an integer indicating the number of bytes placed in the
buffer. If the file is opened in the text mode, then read does not count the carriage returns or Ctrl-Z
characters in the number of bytes read. On the end-of-file, read returns 0. On error, read returns -1
and sets the errno global variable to one of the following two values:

EACCES Permission denied
EBADF Bad file number

9.3.5.199 Function Rectangle

Declaration:
wid Rectangle(unsigned long handle, int x1, int y1, int X2, int y2);
Description

Draws an unpainted rectangle using the pen selected with the SelectPen function and paints it
using the brush selected with the SelectBrush function; (x1, y1) are the coordinates of the upper
left corner; (x2, y2) are the coordinates of the lower right corner.

9.3.5.200 Function RedrawScreen

Declaration:
woid RedrawScreen();
Description

Updates all open windows of the name. Use this function, when the script file changes the
microcontroller resources and you want to view the result of the change. A script file cannot update
the screen on its own, because it takes significant time (as compared with the script file execution
speed).

Example:

SetByte(addr, AS_DATA, 0x11);

RedrawScreen();

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 307

9.3.5.201 Function ReloadProgram

Declaration:
woid ReloadProgram();
Description

Reloads a program that was the last loaded into the microcontroller memory. It is equivalent to the
Re-Load program in the File menu.

9.3.5.202 Function RemoveButtons

Declaration:
woid RemowveButtons(unsigned long handle);
Description

Remowes all buttons from the window that were added by the AddButton function. This function is
useful, when a script file is restarted and the user window used by this script file contains buttons
generated by the script file during the previous run.

9.3.5.203 Function rename

Declaration:

int rename(char oldname[], char newnamel]);

Description

Renames a file.

rename changes the name of a file from oldname to newname

Directories in oldname and newname need not be the same, so rename can be used to mowe a file
from one directory to another. Wildcards are not allowed.

This function will fail (EACCES), if either file is currently open in any process.
Returned Value

On success, rename returns 0. On error (if the file cannot be renamed), it returns -1 and the global
variable is set to one of the following values:

EACCES Permission denied: filename already exists or the path is invalid
ENOENT No such file or directory
ENOTSAM Not same device

9.3.5.204 Function rewind

Declaration:
woid rewind(unsigned long stream);
Description

Repositions the file pointer to the beginning of the stream.

rewind(stream) is equivalent to fseek (stream, OL, SEEK_SET), except that rewind clears the end-

© 2017 Phyton, Inc. Microsystems and Development Tools

308 CPI2-B1 In-System Device Programmer

of-file and error indicators, while fseek clears the end-of-file indicator only. After rewind, the next
operation on the update file can be either input or output.

9.3.5.205 Function Right

Declaration:
woid Right(int count=1);
Description

Mowe the cursor positions right. The same result can be achieved by incrementing the CurCol built-
in variable.

9.3.5.206 Function rmdir

Declaration:

int rmdir(char path[]);

Description

Remowes a directory.

rmdir deletes the directory, whose path is given by path. The directory named by path:

must be empty
must not be the current working directory

must not be the root directory
Returned Value

rmdir will return O, if the directory is successfully deleted. The returned value of -1 indicates an error
and the errno global variable contains one of the following values:

EACCES Permission denied
ENOENT Path or file function not found

9.3.5.207 Function SaveData

Declaration:

wid SawveData(unsigned char file_name[], int format, int addr_space, unsigned long start_addr,
unsigned long end_addr);

Description
Sawves the microcontroller memory area in the file.
Parameters:

file_name - the name of unloaded file.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 309

format - the format of unloaded file. Character constants with

the prefix SF_ declared in the system.h header file

are provided for this parameter. To understand this better,

open the Sawe file dialog and go through the

format names.
addr_space - the microcontroller memory space, from where data is unloaded.
start_addr - the initial address of unloaded area.

end_addr - the final address of unloaded area (inclusive).
Example
SaweData("C:\\PROGWTEST.HEX', SF_HEX, AS_CODE, 0, 0x3FFF);

9.3.5.208 Function SaveDesktop

Declaration:

wid SaveDesktop(char file_name][]);

Description

Sawves the screen configuration in the specified file (see Configuration Files)

9.3.5.209 Function SaveFile

Declaration:
int SaveFile();
Description

Sawes the file from the current window.

9.3.5.210 Function SaveOptions

Declaration:

wid SaveOptions(char file_name[]);

Description

Sawes the options in the specified file (see Configuration Files

9.3.5.211 Function scanf

Declaration:
int scanf(char format[], ...);
Description

The scanf function displays prompt to enter a character string. The string you enter is parsed in

© 2017 Phyton, Inc. Microsystems and Development Tools

310 CPI2-B1 In-System Device Programmer

accordance with the format line.

scanf scans a series of input fields one character at a time reading from a stream. After that, each
field is formatted in accordance with a format specifier passed to scanf in the format string pointed
to by format. Finally, scanf stores the formatted input at the address passed to it as the argument
following the format. The number of format specifiers and addresses must be the same as the
number of input fields.

Notes

1. Your arguments passed to this function shall match the format line. In case of mismatch, the
CPI2-B1 program may crash, because it cannot check the correspondence between the format
string and parameters passed. For details on format specifiers, see the scanf Format Specifiers.

2. All arguments for this function shall be arrays, because only the array parameters are passed by
address to functions. Also, see example below.

scanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion on
possible causes.

Returned Value

scanf returns the number of input fields successfully scanned, conwverted and stored. The return
value does not include the scanned fields that were not stored. If no fields are stored, then 0 will be
returned.

Example
int i[1];
float f]1];
char name[64];
scanf("%d %f %s", i, f, name);
/I'lf"123 4.56 String" is entered in the prompt, then:

/1'i[0] will assume value 123,

/I name will be equal to the string "String".

9.3.5.212 Function Search

Declaration:
int Search(char text[], int in_block=0);
Description

Searches for text text. The search area is defined by the in_block parameter: if it is 0, the search
will be performed in the whole text, otherwise, in the marked block only.

The search is always performed from the cursor position.

The search options are defined by the CaseSensitive, WholeWords and RegularExpressions built-
in variables.

If text is found, then Search will return 1, otherwise it will return 0. The string that was found is

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 311

copied to the LastFoundString variable. This is because the found string may not be the same as
the search argument

9.3.5.213 Function searchpath

Declaration:

int searchpath(char file_name[], char path[]);
Description

Searches the operating system path for a file.

searchpath attempts to locate a file by searching along the operating system path specified by the
PATH=... directive in the environment. The complete path-name string is stored in path. First,
searchpath searches for the file in the current directory of the current drive. If the file is not found
there, the PATH environment variable will be fetched and each directory in the path will be searched
in turn until the file is found or the path is exhausted. If the file is located, the string with the full
path name will be copied to path. This string can be used in a call to access the file (for example,

with fopen).

searchpath returns TRUE on success, otherwise it returns FALSE.

9.3.5.214 Function SearchReplace

Declaration:
unsigned long SearchReplace(char text[], char new_text[], int in_block=0, int replace_all=0);
Description

Searches for text and replaces. The replace_all parameter specifies, whether the search is
continued after the first occurence of text is replaced. If replace_all is 0, then only the first
occurence will be replaced, otherwise, all occurences.

SearchReplace returns the number of replaces

9.3.5.215 Function SelectBrush

Declaration:
woid SelectBrush(unsigned long handle, unsigned long color);
Description

Selects a brush for drawing with the specified color. By default, a brush with the standard color is
selected, when the window opens. Brushes are used for drawing painted figures such as circles,
rectangles, etc.

9.3.5.216 Function SelectFont

Declaration:

wid SelectFont(unsigned long handle, char name][], int height);

© 2017 Phyton, Inc. Microsystems and Development Tools

312 CPI2-B1 In-System Device Programmer

Description

Selects a font for text output. As opposed to the SetWindowFont function, this font can be
proportional. It is used for displaying text with the DisplayTextF function anywhere in the window.

name is the line with the font name; height specifies the font height.

9.3.5.217 Function SelectPen

Declaration:

woid SelectPen(unsigned long handle, unsigned long color, int width=1, int style=PS_SOLID);

Description

Selects a pen for drawing with the specified parameters. The standard pen (a solid line with the
width of 1) and the standard color are selected by default, when the window opens. Pens are used
for drawing lines, circumferences, etc.

Parameters:

color

width - the pen width; certain videoadapters face problems while drawing lines
with a width greater than 1;

style - the line type:
PS_SOLID - solid

PS_DOT - dotted
PS DASHDOT - dash-and-dot
PS_DASHDOTDOT - dash-and-dot-and-dot

9.3.5.218 Function SetBkColor

Declaration:
woid SetBkColor(unsigned long handle, unsigned long color);
Description

Sets up the window background color.

9.3.5.219 Function SetBkMode

Declaration:
wid SetBkMode(unsigned long handle, int mode);
Description

Sets the text display mode for the window. For the mode parameter, the system.h system header
file contains two constants: OPAQUE and TRANSPARENT. When text is displayed (see
DisplayText, DisplayTextF) and the display mode is set to OPAQUE, then the rectangle with text
will be first filled with the background color. In the TRANSPARENT mode, the text overlaps the

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 313

previous output.

9.3.5.220 Function SetBreak

Declaration:
woid SetBreak(unsigned long addr);
Description

Sets up the code breakpoint at the specified address

9.3.5.221 Function SetBreaksRange

Declaration:

voi d Set BreaksRange(unsi gned | ong start_addr, unsigned |ong end_addr);

Description
Sets up the code breakpoints in the range from start_addr to end_addr inclusive.

9.3.5.222 Function SetByte

Declaration:
woid SetByte(unsigned long addr, int addr_space, unsigned int value);
Description

Writes value (byte) to the specified address in the specified memory area (the parameter).
Constants with the AS_ prefix for microcontroller memory areas (address spaces) are defined in
the system.h header file.

Example
SetByte(0x2000, AS_CODE, 0xFF);

9.3.5.223 Function SetCaption

Declaration:

woid SetCaption(unsigned long handle, int set);

Description

Remowes or restores the window's caption bar in accordance with the value of set.

9.3.5.224 Function setdisk

Declaration:

int setdisk(int drive);
Description

Sets the current drive number.

setdisk sets the current drive to the one associated with drive: O for A, 1 for B, 2 for C, and so on.

© 2017 Phyton, Inc. Microsystems and Development Tools

314

CPI2-B1 In-System Device Programmer

9.3.5.225 Function SetDword

Declaration:
woid SetDword(unsigned long addr, int addr_space, unsigned long value);
Description

Writes a double word (32 bits) to the specified address in the specified memory area (the
addr_space parameter). Constants with the AS__ prefix for microcontroller memory areas (address
spaces) are defined in the system.h header file.

Example
SetDword(0x2000, AS_CODE, 0x12345678);

9.3.5.226 Function SetFileName

Declaration:
wid SetFileName(char name][]);
Description

Sets the file name for the current Source

9.3.5.227 Function setftime

Declaration:

int setftime(long handle, unsigned long time);
Description

Sets the file date and time.

setftime sets the file date and time of the disk file associated with the open handle to the date and
time provided in the time parameter. The file must be open for writing; the EACCES error will occur
if the file is open for read-only access. The file must not be written to after the setftime call or the
changed information will be lost. setftime requires the file to be open for writing; an EACCES error
will occur if the file is open for read-only access. The time parameter has the following layout:

Bits Value

0...4 two seconds
5...10 minutes
11...15 hours
16...20 days
21...24 months
25...31 year - 1980

Returned Value

setftime returns 0 on success. In the event of an error, -1 is returned and the errno global variable is
set to one of the following values:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 315

EACCES Permission denied
EBADF Bad file number
EINVENC Invalid function number

9.3.5.228 Function SetMark

Declaration:

woid SetMark(int number);

Description

Sets the bookmark with the numberNumber shall be within 1...10.

9.3.5.229 Function setmem

Declaration:

wid setmem(woid s[], unsigned int length, char value, int index=0);

Description

In the object specified by ssetmemvalue (and converted into the unsigned char).
Returned value

None.

9.3.5.230 Function SetMemory

Declaration:
woid SetMemory(woid src[], int n, unsigned long addr, int addr_space);
Description

Writes n-byte memory block to the specified address in the specified memory area (the
addr_space parameter) from the src array. Constants with the prefix for microcontroller memory
areas (address spaces) are defined in the system.h header file.

Example
SetMemory("12345678", 8, 0x20, AS_DATA);

9.3.5.231 Function setmode

Declaration:

int setmode(long handle, int amode);

Sets mode of an open file.

setmode sets the mode of the opened file associated with handle to either binary or text. The
amode argument must have the value of either O_BINARY or O_TEXT, never both. (These symbolic
constants are defined in system.h).

© 2017 Phyton, Inc. Microsystems and Development Tools

316 CPI2-B1 In-System Device Programmer

Returned Value

setmode returns the previous translation mode, if successful. On error, it returns -1 and sets the
errno global variable to

EINVAL Invalid argument

9.3.5.232 Function SetPixel

Declaration:

wid SetPixel(unsigned long handle, int X, int y, unsigned long color);

Draws one point of the specified color in the specified place.

9.3.5.233 Function SetTextColor

Declaration:
woid SetTextColor(unsigned long handle, unsigned long color);

Description

Sets up color of the text printed out by the wprintf function, or displayed by the DisplayText and
DisplayTextF functions. The color you set remains unchanged until SetTextColor is called for the
next time. The standard color is used by default.

Example

unsigned long handle = OpenStreamWindow("Serial port");
SetTextColor(handle, OXFF);

wprintf(handle, "Will be written in red color\n");
SetTextColor(handle, OxFF0O);

wprintf(handle, "Will be written in green color");

9.3.5.234 Function SetToolbar

Declaration:
woid SetToolbar(unsigned long handle, int set);
Description

Remowes or restores the window's toolbar in accordance with the value of set.

9.3.5.235 Function SetUpdateMode

Declaration:
wid SetUpdateMode(unsigned long handle, int update);

Description

Sets up the window update mode. By default, all graphical output is immediately displayed in the

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

Reference 317

window. The SetUpdateMode function sets up a different update mode, when graphical output is
cached in the memory and drawing is carried out by calling the UpdateWindow function. Using this,
the drawing is performed faster. The update parameter can assume two values:

UM_IMMEDIATE - immediate drawing;
UM_ONREQUEST - drawing by calling the UpdateWindow function.
Example

ulong handle = OpenUserWindow("Test");

MoweTo(handle, 20, 20);
LineTo(handle, 40, 40);
LineTo(handle, 45, 45);
UpdateWindow(handle);

9.3.5.236 Function SetWindowFont

Declaration:

woid SetWindowFont(unsigned long handle, char font_name[], int height);
Description

Sets up the font for the specified window.

The handle parameter is the window identifier produced by the call of the , and EindWindow
functions.

font_name is the string with the font name; is the font height.

Only monospaced fonts, such as Courier or Fixedsys, shall be used.

You can draw with any font, in the User window. To select the font, use the SelectFont function.
Example

unsigned long handle = OpenWindow(WIN_DUMP);

SetWindowFont(handle, "Courier New", 12);

9.3.5.237 Function SetWindowSize

Declaration:
wid SetWindowSize(unsigned long handle, int w, int h);
Description

Sets up the new size for the specified window. The handle parameter is the window identifier
produced by the call of the OpenWindow, and FindWindow functions. w and are the new width and
height of the window (in pixels). The size also includes the non-user area of the window (the frame
and title).

The position of the window upper left corner does not change.

© 2017 Phyton, Inc. Microsystems and Development Tools

318 CPI2-B1 In-System Device Programmer

9.3.5.238 Function SetWindowSizeT

Declaration:
wid SetWindowSizeT(unsigned long handle, int w, int h);
Description

Sets up the new size for the specified window in text units. Since almost all windows of CPI2-B1
use the pseudotext mode, it can be useful to specify the window size only in terms of text.

The handle parameter is the window identifier produced by the call of the OpenWindow, and
FindWindow functions. w is the number of text characters in the line; h is the number of lines in the

window.

9.3.5.239 Function SetWord

Declaration:
woid SetWord(unsigned long addr, int addr_space, unsigned int value);
Description

Writes a word (16 bits) to the specified address in the specified memory area (the addr_space
parameter). Constants with the AS_ prefix for microcontroller memory areas (address spaces) are
defined in the system.h header file.

Example
SetWord(0x2000, AS_CODE, OxFFFF);

9.3.5.240 Function sin

Declaration:

float sin(float Xx);

Description

The sin function calculates the sine of the floating-point number x.
Returned value

The sin function returns the sine of x.

9.3.5.241 Function sprintf

Declaration:
wid sprintf(char dest[], unsigned char format[], ...);

Description

The sprintf function displays the values of transferred parameters in the dest line in accordance with
the format line.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 319

Note. Your arguments passed to this function shall match the format line. In case of mismatch, the
CPI2-B1 program may crash, because it cannot check the correspondence between the format
string and parameters passed.

Returned value

None.

9.3.5.242 Function sqrt

Declaration:

float sqrt(float x);

Description

The sqrt function calculates the square root of number x.
Returned value

The sqrt function returns the square root of x. The returned value for negative arguments is 0.

9.3.5.243 Function srand

Declaration:
woid srand(unsigned int seed);
Description

Initializes a random number generator by a specified number.

9.3.5.244 Function sscanf

Declaration:

int sscanf(char buf[], char format[], ...);

Description

The sscanf function parses the buf string in accordance with the format line.

sscanf scans a series of input fields one character at a time reading from a stream. After that, each
field is formatted in accordance with a format specifier passed to sscanf in the format string pointed
to by format. Finally, sscanf stores the formatted input at the address passed to it as the argument
following the format. The number of format specifiers and addresses must be the same as the
number of input fields.

Notes

1. Your arguments passed to this function shall match the format line. In case of mismatch, the
CPI2-B1 program may crash, because it cannot check the correspondence between the format
string and parameters passed. For details on format specifiers, see the scanf Format Specifiers.

2. All arguments for this function shall be arrays, because only the array parameters are passed by
address to functions. Also, see example for scanf.

sscanf can stop scanning a particular field before it reaches the normal end-of-field character

© 2017 Phyton, Inc. Microsystems and Development Tools

320

CPI2-B1 In-System Device Programmer

(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion on
possible causes.

Returned Value

9.3.5.245 Function Step

Declaration:

void Step();

Description

Executes one machine instruction (the low-level step mode).

Note. The screen is not updated automatically after this function is called. To organize the automatic
update, use the RedrawScreen function at the appropriate moment.

9.3.5.246 Function Stop

Declaration:
woid Stop();
Description

Stops the program under execution.

9.3.5.247 Function stpcpy

Declaration:

int stpcpy(char dest[], char src]], int dest_index=0, int src_index=0);
Description

The stpcpysrc line to the dest line and attaches the zero character.
Returned value

The stpcpy function returns the number of the last byte copied to dest

9.3.5.248 Function strcat

Declaration:

woid strcat(char dest[], char src[], int dest_index=0, int src_index=0);
Description

The strcat function joins the line to the dest line and ends the dest line with zero.
Returned value

None.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 321

9.3.5.249 Function strchr

Declaration:
int strchr(char s[], int c, int index=0);
Description

The strchr function searches the first entry of character cs. The zero characters also participate in
the search.

Returned function

The strchr function returns the number of the found character to s and returns -1, if there is no such
character there.

9.3.5.250 Function strcmp

Declaration:

int strcmp(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

The strcmps1 and s2 letter-by-letter and returns the result of the search.
Returned value

The function returns the following values of comparison result:

Value Meaning

<0 slis less than s2
=0 slis equal to s2
>0 sl is greater than s2

9.3.5.251 Function strcmpi

Declaration:
int strcmpi(char s1[], char s2[], int s1_index=0, int s2_index=0);

The same as stricmp

9.3.5.252 Function strcpy

Declaration:

woid strcpy(char dest[], char src[], int dest_index=0, int src_index=0);

Description

The strcpy function copies the contents of line src to line dest and attaches the zero character.
Returned value

None.

© 2017 Phyton, Inc. Microsystems and Development Tools

322 CPI2-B1 In-System Device Programmer

9.3.5.253 Function strcspn

Declaration:

int strcspn(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

The function searches any character from line s2 to line s1.
Returned value

The strcspn function returns the number of the first character in line s1 equal to any character from
line s2. Zero will be returned, if the first character in line s1 is equal to any character from line s2. If
there are no such characters there, then the length of line s1 will be returned (the zero character is
not taken into account).

9.3.5.254 Function stricmp

Declaration:
int stricmp(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

The stricmp function compares lines s1 and s2 letter-by-letter regardless of the character case and
returns the result of the search.

Returned value
The stricmp function returns the following comparison results:

Value Meaning

<0 slis less than s2
=0 slis equal to s2
>0 sl is greater than s2

9.3.5.255 Function strlen

Declaration:

int strlen(char s[], int index=0);

Description

The strlen function calculates the length of line src in bytes. The last zero character is not counted.
Returned value

The strlen function returns the length of line src.

9.3.5.256 Function striwr

Declaration:

woid striwr(char s[], int index=0);

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 323

Description
The strlwr function converts line s to the lower case.
Returned value

None.

9.3.5.257 Function strncat

Declaration:
woid strncat(char dest[], char src[], int n, int dest_index=0, int src_index=0);
Description

The strncat function attaches the maximum of n characters from line scr to line dest and ends dest
with the zero character. If there are less than n characters in line , then the whole line src together
with the zero character will be copied.

Returned value

None.

9.3.5.258 Function strncmp

Declaration:

int strcnp(char si[], char s2[], int sl_index=0, int s2_index=0);

Description

The strcmp function compares lines s1 and s2 letter-by-letter and returns the result of the search.
Returned value

The strcmp function returns the following values of comparison result:

Val ue Meani ng

<0 sl is less than s2
=0 sl is equal to s2
>0 sl is greater than s2

9.3.5.259 Function strncmpi

Declaration:
int strncmpi(char dest[], char srcf], int n, int dest_index=0, int src_index=0);
Description

The strncmpi function compares the first n bytes of lines s1 and s2 letter-by-letter regardless of the
character case and returns the comparison result.

Returned value

The strncmpi function returns the following values of the lines s1 and s2

© 2017 Phyton, Inc. Microsystems and Development Tools

324

CPI2-B1 In-System Device Programmer

<0 slis less than s2
=0 slis equal to s2
>0 sl is greater than s2

9.3.5.260 Function strncpy

Declaration:
woid strncpy(char dest[], char src[], int n, int dest_index=0, int src_index=0);
Description

The strncpy function copies the maximum of n characters from line scrn characters in line src, then
the zero characters will be added to line dest to extend it up to the size of n.

Returned value

None.

9.3.5.261 Function strnicmp

Declaration:
int strnicmp(char dest[], char src[], int n, int dest_index=0, int src_index=0);

The same as strncmpi.

9.3.5.262 Function strnset

Declaration:

woid strnset(char s[], int c, int n, int index=0);

Description

The strnset function sets the maximum of n characters from line s to zero.
Returned value

None.

9.3.5.263 Function strpbrk

Declaration:
int strpbrk(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

Function strpbrk searches for the first occurrence of any character from line s2 in line s1. The zero
character is not the search element.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 325

Returned value

The strpbrk function returns the number of the found character in line s1. If line s1 does not contain
any characters from line s2, then -1 will be returned.

9.3.5.264 Function strrchr

Declaration:
int strchr(char s[], int c, int index=0);
Description

The strchr function searches the first entry of character c in line s. The zero characters also participate in
the search.

Returned function

The strchr function returns the number of the found character to s and returns -1, if there is no such
character there.

9.3.5.265 Function strrev

Declaration:

woid strrev(char s[], int index=0);

Description

The strrev function reverses the byte order in line s. For example, if we write:
char s[] = "1234"; strrev(s);

then the lines will contain "4321".

Returned value

9.3.5.266 Function strset

Declaration:

woid strset(char s[], int c, int index=0);

Description

The strset function sets all characters in line s to the value of c.
Returned value

None.

9.3.5.267 Function strspn

Declaration:
int strspn(char s1[], char s2[], int s1_index=0, int s2_index=0);

© 2017 Phyton, Inc. Microsystems and Development Tools

326

CPI2-B1 In-System Device Programmer

The strspn function searches in the line s21 for symbols, which are absent in line s2.
Returned value

The strspn function returns the number of the first character in line s1, which is known to be absent
in line s2. If there are no such symbols in line s1, then the length of line s1 will be returned (the
zero character is not taken into account).

9.3.5.268 Function strstr

Declaration:
int strstr(char s1[], char s2[], int s1_index=0, int s2_index=0);
Description

The strstr function searches for the first occurrence of the string from s2 in line s1 (the zero
character is not taken into account).

Returned value

The strstr function returns the number of the first byte of the string from s2, or returns -1, if there is
no such string there.

9.3.5.269 Function strtol

Declaration:

long strtol(char s[], int endptr[], int radix, int index=0);

Converts an ASCII-string (the s parameter; index specifies shift in the line) into a long number. The
radix parameter is the radix used for conversion (2...36).

String s may include the following components:

[ws] [sn] [O] [x] [ddd]

[ws] - Optional spaces or tabulation symbols

[sn] - Optional sign (+ or -)

[O] - Optional zero (0)

[X] - Optional x or X

- Optional digits

endptr array contains that character number).

If radix is equal to 0, then radix will be selected by the first few characters of the s string:

First character Second character String interpretation

0 1-7 Octal

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 327

0 X or X Hexadecimal
1-9 Decimal
Returned value

The conwverted long integer number.

9.3.5.270 Function strtoul

Declaration:
unsigned long strtoul(char s[], int endptr[], int radix, int index=0);
Description

The strtoul function is the same as strtol, except that it returns the unsigned long integer.

9.3.5.271 Function strupr

Declaration:

woid strupr(char s[], int index=0);

Description

The strupr function converts line s to the upper case.
Returned value

None.

9.3.5.272 Function tan

Declaration:

float tan(float x);

Description

The tan function calculates the tangent of the floating-point number x.
Returned value

The tan function returns the tangent of argument x.

9.3.5.273 Function tanh

Declaration:
float tanh(float x);
Description

The tanh function calculates the hyperbolic tangent of the floating-point number x. The argument should
range from -88.72280 to 88.72280.

Returned function

© 2017 Phyton, Inc. Microsystems and Development Tools

328 CPI2-B1 In-System Device Programmer

The tanh function returns the hyperbolic tangent of argument x.

9.3.5.274 Function tell

Declaration:

long tell(long handle);

Description

Gets the current position of the file pointer.

tell gets the current position of the file pointer associated with handle and expresses it as the
number of bytes from the beginning of the file.

Returned Value

tell returns the current file pointer position. Returned -1 (long) indicates an error, and the errno
global variable is set to

9.3.5.275 Function TerminateAllScripts

Declaration:
wid TerminateAllScripts();
Description

Stops execution of all script files (except the script called by this function).

9.3.5.276 Function TerminateScript

Declaration:
woid TerminateScript(char file_name[]);
Description

Stops execution of the specified script file and unloads it from the memory, if possible. The file
name parameter is the script file name without path and extension.

9.3.5.277 Function Text

Declaration:

woid Text(char text([]);

Description

text text from the cursor position, as if it were typed from the keyboard.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 329

9.3.5.278 Function toascii

Declaration:

int toascii(unsigned char c);

Description

The toascii function cuts off the high bit of parameter c.
Returned value

The toascii function returns the value of ¢ cut down to 7 bits

9.3.5.279 Function Tof

Declaration:

void Tof();

Description

Mowe the cursor to the top of the file (position (1:1)).

9.3.5.280 Function tolower

Declaration:
int tolower(unsigned char c);
Description

tolower function converts character c to the lower case. If ¢ is not an alphabetic character, then it
will not be converted.

Returned value
The tolower function returns character c¢ in the lower case.

9.3.5.281 Function toupper

Declaration:
int toupper(unsigned char c);
Description

The toupper function converts character c to the upper case. If ¢ is not an alphabetic character,
then it will not be converted.

Returned value

The toupper function returns character c¢ in the upper case.

9.3.5.282 Function ultoa

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

330 CPI2-B1 In-System Device Programmer

woid ultoa(unsigned long value, char string[], int radix);

Description Converts an unsigned long integer (value) into the character string (string). The radix
parameter is the radix used for conversion (2...36).

9.3.5.283 Function unlink

Declaration:

int unlink(char file_name[]);
Description

Deletes a file.

unlink deletes the file specified by file_name. Any drive, path, and file name can be used as the
filename. Wildcards are not allowed. This call cannot delete read-only files.

Note. If your file is open, be sure to close it before unlinking it.
Returned Value

On success, unlink returns 0. On error, it returns -1 and sets the errno global variable to one of the
following values:

EACCES Permission denied
ENOENT Path or file name not found

9.3.5.284 Function unlock

Declaration:

int unlock(long handle, long offset, long length);
Description

Releases file-sharing locks.

unlock provides interface to the operating system file-sharing mechanism. unlock removes a lock
previously placed with a call to lock. To awoid error, all locks must be remowved before closing a file.
The program must release all locks before completing.

Returned Value

On success, unlock returns 0. On error, it returns -1.

9.3.5.285 Function Up

Declaration:
woid Up(int count=1);
Description

Mowe the cursor count lines up. The same result can be achieved by decrementing the CurLine
built-in variable.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 331

9.3.5.286 Function UpdateWindow

Declaration:
voi d Updat eW ndow unsi gned | ong handl e) ;
Description

Draws an image in the specified window. The image is cached in the memory during graphical output
function calls. Calling this function makes sense only when selecting the mode of drawing with the
SetUpdateMode function call with the UM_ONREQUEST parameter

9.3.5.287 Function Wait

Declaration:

voi d Wit (unsigned | ong m croseconds);

Description

Suspends execution of the script file until the specified interval of the time is up.

The <%CM%> cannot trace extremely short time intervals, because some time is needed for data
transmission through the serial channel.

Example:
while (1) /1 endl ess cycle
{

Wait(100); // to wait for 100 m croseconds.
$P1 A= 1, [/l to invert bit O in port P1

9.3.5.288 Function WaitExprChange

Declaration:

woid WaitExprChange(char str(]);

Description

Suspends execution of the script file until the expression specified in the str line changes its value.
The peculiarities of this function for the CPI2-B1 are the same as for .

Note that you should not precede the variable names with '$' sign in the expression string.
Example:

while (1) // the endless cycle

{
WaitExprChange("P1 & 2"); /I to wait until value of bit 1
/I of port P1 changes

P2|=P1&2 /I to execute certain action

}

© 2017 Phyton, Inc. Microsystems and Development Tools

332

CPI2-B1 In-System Device Programmer

9.3.5.289 Function WaitExprTrue

Declaration:
voi d Wai t Expr True(char str[]);
Description

Suspends execution of the script file until the expression specified in the str line becomes True as the
result of executing.

The expression operands should be available in the continuous emulation mode, otherwise the
expression is always False.

An operand value poll is executed within the specified time interval. Therefore, the expression should
remain True during this interval, otherwise the programmer cannot trace the moment, when the
expression becomes True.

Note. You should not precede the variable names with '$' sign in the expression string.

Example:
while (1) /1 the endl ess cycle
{
Wi t Expr True(" Counter > 200"); // to wait for the condition to
become True
Stop(); /!l to stop the program

printf("Counter overflow at %94X', $PC); // to display the nessage

9.3.5.290 Function WaitGetMessage

Declaration:
wid WaitGetMessage(int id);
Description

WaitSendMessage

9.3.5.291 Function WaitMemoryAccess

Declaration:

voi d Wai t Menor yAccess(unsi gned | ong addr, int addr_space, int numbytes, int
flags);

Description

Suspends execution of the script file until the processor (the program being executed) accesses the
specified memory area. Parameters:

addr - the menory area address.

addr _space - the address space. Constants with prefix AS_
are given in the systemh file.

num bytes - the anount of bytes in the nenory area.

flags - the flags that define the type of menory access:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 333

MA_READ - reading, MA VR TE - witing,
MA READ | MA_WRITE - both reading and witing.

This function does not work in the emulators.

After return from the function, the built-in variables contain information on the latest traced memory

access:
LastMemAccAddr the memory address
LastMemAccAddrSpace the type of address space
LastMemAccLen the amount of bytes

LastMemAccType the type of access (MA_READ, MA_WRITE).
Example:

while (1) /1 endl ess cycle

{

Wi t Menor yAccess(0x80, AS DATA, 1, VA WRI TE);
// to wait for wite to the data nmenory cell with the address of
0x80 (bytes).
$P1 N= 1; // to invert bit 0 in port P1
}

9.3.5.292 Function WaitSendMessage

Declaration:
wid WaitSendMessage(int id, unsigned int int_data, unsigned long long_data);
Description

The WaitSendMessage and WaitGetMessage functions provide a mechanism for message
exchange between two copies of the CPI2-B1 program (or other Phyton products) running
simultaneously. These functions are used mostly for simulators and allow simulation of multi-
processor systems that exchange data with each other.

To simulate, say, a two programmers system, you should launch two copies CPI2-B1 and set up
the exchange of data between them. You can start the second copy of CPI2-B1 by copying the
UprogNT2.EXE file to a file with another name and then starting it.

The WaitSendMessage function "sends a message" to another copy of CPI12-B1 and waits until the
message is "delivered”, i.e. the receiver copy of CPI2-B1 calls the WaitGetMessage function. If the
receiver has already called WaitGetMessage and is waiting for an incoming message, the
WaitSendMessage function returns immediately, otherwise it will return, when a period of model
time is passed. The model time flows, when the simulated program runs.

When calling WaitSendMessage and WaitGetMessage, you supply the id parameter that identifies
the message. The message will be delivered to the copy of CPI2-B1 that is waiting for message
with the same id.

The int_data and long_data parameters are the user data. You may set these parameters to any
values you wish. When the receiver's WaitGetMessage returns the control, the transmitter's
int_data value is copied to the receiver's LastMessagelnt built-in variable and long_data is copied
to LastMessagelLong.

Note that CPI2-B1 uses its own internal means for message exchange, not the message

© 2017 Phyton, Inc. Microsystems and Development Tools

334 CPI2-B1 In-System Device Programmer

mechanism of Windows.
Example

#define SecondCopyMsg 0
#define InitExchange 0
#define InitExchangeOk 0

Run(); // start model time
WaitSendMessage(SecondCopyMsg, InitExchange, 0);
WaitGetMessage(SecondCopyMsg);

if (LastMessagelnt = InitExchangeOk)

{
printf("Exchange failed");

return;

}

9.3.5.293 Function WaitStop

Declaration:
voi d WaitStop();
Description

Suspends execution of the script file until the program stops. The program can be stopped either by a
breakpoint or manually.

9.3.5.294 Function WaitWindow Event

Declaration:
woid WaitWindowEwent(unsigned long handle);
Description

Allows to organize interaction between user and the User window and the okHo MoTtok BBOAa/
BbiBoga. The function waits for an event associated with the specified window and returns control to
the script file, when the event occurs. The function locates type of the occurred event and places
relevant data into the internal variables accessible with the following functions:

LastEvent

LastEventiInt{1...4}

Example

ulong handle = OpenUserWindow("Interactive Window");
while (1)

{

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 335

WaitWindowEwent(handle);
switch (LastEvent(handle))
{
case WE_CLOSE: return; /I window is closed, script file is being completed

case WE_REDRAW: Redraw(handle); // to call our function Redraw,

case WE_MOUSEBUTTON: Change(handle); // to call our function Change,
break; /I that responds to the clicked

/I mouse button

}

9.3.5.295 Function wgetchar

Declaration:
woid wgetchar(unsigned long handle);

Description

Waits for pressing an alphanumeric key on the keyboard, when the specified window has input
focus, that is, is active. The pressed key code can be obtained with the LastChar function.

The entered character is automatically displayed in the window.
Example

unsigned long handle = OpenStreamWindow("Serial port");
wprintf(handle, "Press \"E\" for exit");

wgetchar(handle);

if (toupper(LastChar(handle)) == 'E") return

9.3.5.296 Function wgethex

Declaration:
woid wgethex(unsigned long handle);

Description

Waits for two hexadecimal digits (a byte value) to be entered from the keyboard. The entered
number can be obtained with the LastChar function.

The entered characters are automatically displayed in the window. The Enter key mowves the
window cursor to the beginning of the new line.

© 2017 Phyton, Inc. Microsystems and Development Tools

336 CPI2-B1 In-System Device Programmer

9.3.5.297 Function wgetstring

Declaration:
woid wgetstring(unsigned long handle);
Description

Waits until the character string is ended by pressing the Enter key. The entered string can be
obtained with the LastString function.

The entered characters are automatically displayed in the window.

9.3.5.298 Function WindowHotkey

Declaration:
woid WindowHotkey(unsigned long handle, int key);
Description

Sends the local menu command corresponding to the hot key (parameter key) to the specified
window. The local window menu lists the hot keys. key is the ASCII value of the key without
indicating Ctrl: for example, to imitate pressing Ctrl+T in the window, the key parameter shall be
equal to T.

Example
unsigned long handle = OpenWindow(WIN_WATCHES);

WindowHotkey(handle, 'A"); /I imitates pressing Ctrl+A

9.3.5.299 Function WordLeft

Declaration:
wvoid WordLeft();
Description

Moves the cursor to the next word (on the right).

9.3.5.300 Function WordRight

Declaration:
wid WordRight();
Description

Mowes the cursor to the previous word (on the left).

9.3.5.301 Function wprintf

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 337

woid wprintf(unsigned long handle, char format(], ...);

Displays the values of transferred parameters in the window in accordance with the format line.

Attention! You are responsible for matching the arguments transferred to wprintf function into the
line format. A mismatch may bring CPI2-B1 to failure.

Example

unsigned long handle = OpenStreamWindow("Serial port");

wprintf(handle, "SP = %04X', $SP\n");

9.3.5.302 Function write

Declaration:

int write(long handle, void buf[], int len);
Description

Writes to a file.

write writes the buffer of data to the file or device specified by handle. The handle file handle is
obtained from the creatopen, dup, or dup? call.

This function attempts to write bytes from the buffer pointed to by buf to the file associated with
handle. Except for the case, when write is used to write to a text file, the amount of bytes written to
the file will be no more than the amount requested. On text files, when write sees a linefeed (LF)
character, it outputs a CR/LF pair.

If the amount of bytes actually written is less than that requested, the condition should be
considered an error and probably indicates a full disk. For disks or disk files, the writing always
proceeds from the current file pointer. For devices, bytes are sent directly to the device.

Returned Value

write returns the number of bytes written. A write to a text file does not count the generated
carriage returns. In case of error, write returns -1 and sets the errno global variable to one of the
following values:

EACCES Permission denied
EBADF Bad file number

9.3.5.303 lock

Declaration:
int lock(long handle, long offset, long length);
Description

Sets file-sharing locks. lock provides interface to the operating system file-sharing mechanism. The
lock can be placed on arbitrary, nonoverlapping regions of any file. A program attempting to read or
write into the locked region will retry the operation three times. If all three retries fail, then the call
will fail with error.

© 2017 Phyton, Inc. Microsystems and Development Tools

338 CPI2-B1 In-System Device Programmer

Returned Value
lock returns 0 on success. On error, lock returns -1 and sets the errno global variable to

EACCES Locking violation

9.3.5.304 Variable _fmode

Declaration:
extern int _fmode;

This is the file operation mode (text or binary).

9.3.5.305 Variable AppIName

Declaration:
extern char AppIName[];
This is the program name, i.e. the string of "CM-ARM".

Available only for reading.

9.3.5.306 Variable BlockCol1

Declaration:

int BlockCol1;

This is the number of the left column of block in the current window. BlockColl is zero for the line
blocks. If no block is marked, BlockColl will also be zero.

Also, see Text Editor Functions.

9.3.5.307 Variable BlockCol2

Declaration:

int BlockCol2;

This is the number of the right column of block in the current Source . BlockCol2 is zero for the line
blocks. If no block is marked, BlockCol2 will also be zero.

Also, see Text Editor Functions

9.3.5.308 Variable BlockLinel

Declaration:
int BlockLinel;
This is the number of the upper line of block in the current Source.

If no block is marked, BlockCol2 will be zero.

Also, see Text Editor Functions

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 339

9.3.5.309 Variable BlockLine2

Declaration:
int BlockLine2;
This is the number of the lower line of block in the current Source

If no block is marked, BlockCol2 will be zero.

Also, see Text Editor Functions

9.3.5.310 Variable BlockStatus

Declaration:
int BlockStatus;

This is the type of block in the current Source The system.h system header file contains
definitions of constants:

EB_NONE - no block

EB_LINE - line block
EB_VERT - ertical block
EB_STREAM - stream block

Also, see Text Editor Functions.

9.3.5.311 Variable CaseSensitive

Declaration:
int CaseSensitive;
Source

Also, see Text Editor Functions.

9.3.5.312 Variable CurcCol

Declaration:
int CurCaol;

This is the number of the current column (the column the cursor is in) in the current Source.
Columns are numbered with 1.

If the cursor is beyond the line end, then CurCol will contain 0.

Assigning a value to CurCol changes the cursor position. Also, see functions GotoXY, Up, Down,
LeftRight, Tof, EofEal.

9.3.5.313 Variable CurLine

Declaration:

int CurLine;

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

340 CPI2-B1 In-System Device Programmer

Source. Lines are numbered with 1.
Assigning a value to CurLine changes the cursor position. Also, see functions GotoXY, Up, Down, ,
Right, Tof, Eof, Eol.

9.3.5.314 Variable DesktopName

Declaration:
extern char DesktopName[];
This string is the name of the current screen configuration file (see Configuration Files).

Available only for reading.

9.3.5.315 Variable errno

Declaration:
extern int errno;
This is the error code set up by some built-in functions such as read.

9.3.5.316 Variable InsertMode

Declaration:

int InsertMode;

This is the insert mode for the current Source . Assigning a value to InsertMode toggles the insert
mode for the window.

Also, see Text Editor Functions.

9.3.5.317 Variable LastFoundString

Declaration:

char LastFoundString[];

This is the string with the text that was last found in the current Source . Because the search
argument may contain regular expretion, the string found may not be the same as the search

argument.

Also, see Text Editor Functions.

9.3.5.318 Variable LastMemAccAddr

Declaration:
extern unsigned long LastMemAccAddr,;

This is the microcontroller memory address accessed at the last return from the
WaitMemoryAccess function.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 341

9.3.5.319 Variable LastMemAccAddrSpace

Declaration:
extern unsigned int LastMemAccAddrSpace;

This is the type of microcontroller address space accessed at the last return from the
WaitMemoryAccess function

9.3.5.320 Variable LastMemAccLen

Declaration:
extern int LastMemAccLen;

WaitMemoryAccess function.

9.3.5.321 Variable LastMemAccType

Declaration:

extern int LastMemAccType;

This is the microcontroller memory access type that caused a return from the WaitMemoryAccess
function. For example, MA_READ, MA_WRITE or a combination of them.

9.3.5.322 Variable LastMessagelnt

Declaration:

unsigned int LastMessagelnt;
LastMessagelnt keeps the 16-bit parameter received by the WaitGetMessage function.

9.3.5.323 Variable LastMessagelLong

Declaration:

unsigned long LastMessagelong;
LastMessagelnt keeps the 32-bit parameter received by the WaitGetMessage function.

9.3.5.324 Variable MainWindowHandle

Declaration:

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

342 CPI2-B1 In-System Device Programmer

extern unsigned long MainWindowHandle;
This is HWND of the main window of CPI2-B1. It is only for experienced programmers.

9.3.5.325 Variable NumWindows

Declaration:
extern int NumWindows;

This is the number of windows opened in CPI2-B1. Its value changes dynamically, as windows are
opened or closed.

9.3.5.326 Variable RegularExpressions

Declaration:

int RegularExpressions;
Sets up the use of regular expretions for the operation of search in the current Source .

Also, see Text Editor Functions.

9.3.5.327 Variable SelectedString

Declaration:

extern char SelectedString[];
This is the string selected from the menu at the last call of the built-in ExecMenu function.

9.3.5.328 Variable SystemDir

Declaration:

extern char SystemDir][];
This string is the name of the directory, where the CPI2-B1 package is installed.

Available only for reading.

9.3.5.329 Variable WholeWords

Declaration:
i nt Whol eWrds;
Sets up the whole words option for the operation of search in the current Source window.

Also, see Text Editor Functions.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 343

9.3.5.330 Variable WindowHandles

Declaration:
extern unsigned long WindowHandles[];

This is the listing of the CPI2-B1 window handles organized as an array of the NumWindows size.
It is only for experienced programmers.

9.3.5.331 Variable WorkFieldHeight

Declaration:
extern unsigned int WorkFieldHeight;

This is the height of the CPI2-B1 window user area in pixels. It may be useful for locating windows
from script files.

Available only for reading.

9.3.5.332 Variable WorkFieldWidth

Declaration:
extern unsigned int WorkFieldWidth;

This is the width of the CPI2-B1 window user area in pixels. It may be useful for locating windows
from script files.

Available only for reading.

9.4 ACIFuctions and Structures

This section contains detailed descriptions of ACI functions and structures.
9.4.1 ACIFuctions

This sections contains alphabetical list of all ACI functions.
9.4.1.1 ACI_Launch

ACI_FUNC ACI_Launch(ACI_Launch_Params * params);

Description

This function launches the ChipProg-02 software. Optionally this ACI function can launch the
programmer with a specified command line key and load the file that will configure the CPI2-B1

hardware.

Note! This ACI function must always be called before any other ACI function !

9.4.1.2 ACI_Exit
ACI_FUNC ACI_Exit();

Description

© 2017 Phyton, Inc. Microsystems and Development Tools

http://www.helpandmanual.com/order.html?c=%20%2C%A9%20%32%30%30%37%20%45%6E%74%65%72%20%79%6F%75%72%20%63%6F%6D%70%61%6E%79%20%6E%61%6D%65%2C%4C%65%6E%61%40%45%45%4C%45%4E%41%2C%43%3A%5C%54%65%63%68%57%72%69%74%65%72%5C%48%26%4D%5F%50%72%6F%6A%65%63%74%73%5C%43%4D%2D%41%52%4D%5C%45%4E%47%5C%63%6D%2D%61%72%6D%2E%68%6D%78

344

CPI2-B1 In-System Device Programmer

9.4.1.3

9.4.1.4

9.4.1.5

Call of this function stops the ChipProg-02 software. In most cases the programmer practically
immediately stops running. Sometimes, after calling the ACI_EXxit function, it continues working for a
while to correctly complete an earlier launched process. After all, the CPI2-B1 will stop and quit itself
after finding that the controlling process has ended.

It is possible, however, that the ChipProg-02 software will keep running even after the control process
has completely stopped. This is an abnormal situation and, as a result, it will be impossible to re-

establish communication with the programmer hardware by launching the ACI_Launch function. In this
case you should manually close the ChipProg-02 program via the Windows Task Manager.

ACI_ErrorString

ACI_FUNC ACI_ErrorString(ACIL_ErrorString_Params * params);
Description
Get the string describing the result of the last ACI function call.

All ACI functions return the ACI_ERR_xxx error code but this is may not be enough to find out the exact
reason of the error. The string returned by ACI_ErrorString describes the error in detail.

ACIl_LoadConfigFile

ACI_FUNC ACI_LoadConfigFile (ACI_Config_Params * params);
Description

This function loads the CPI2-B1 configuration parameters that include all the settings available via the
ChipProg-02 dialogs (memory buffer configurations, programming options, test of the device insertion,
etc.).

The ChipProg-02 program automatically saves some programming options and settings, including the
type of selected device, the device parameters, the start and end addresses of the device being

programmed, the buffer start address, and a set of the Auto Programming commands. Then it
automatically restores these parameters when the user changes the device type.

See also: ACI_SetProgrammingParams, ACl SetProgOption, ACI_GetProgrammingParams,
ACI_GetProgOption, ACI_SaveConfigFile

ACIl_SaveConfigFile

ACI_FUNC ACI_SaveConfigFle(ACIl_Config Params * params);

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 345

Description

This function saves the CPI2-B1 options specified in the tab Option of the Program Manager window
(memory buffer configurations, programming options, test of the device insertion, etc.).

The ChipProg-02 program automatically saves some programming options and settings including a type
of the selected device, the device parameters, the start and end addresses of the device being
programmed, the buffer start address, and a set of the Auto Programming commands and then
automatically restores these parameters when the user changes the device type.

Cwm. Takxe: ACl_SetProgrammingParams, ACI_SetProgOption, ACI GetProgrammingParams,
ACI_GetProgOption, ACI_LoadConfigFile

9.4.1.6 ACI_LoadProject

ACI_FUNC ACI_LoadProject(ACIl_Project_Params * params);
Description

Load the project. The path to the project file is specified in the ProjectName member of the
ACI_Project_Params structure. The project must be previously prepared and saved manually in the
programmer shell application.

Using this function is convenient because loading a project automatically performs the following:

The programmer shell settings are loaded;

The device chosen in the project is loaded;

The programming options are set to the values specified in the project;
Files specified in the project are loaded to the buffers;

Settings for the Checksum, SerialNumber, Shadow areas, etc. are loaded.

Loading a project with ACI_LoadProject() is the same as loading a project in the programmer shell.

9.4.1.7 ACI_SetDevice

ACI_FUNC ACI_SetDevice(ACIl _Device Params * params);

Description

This function chooses the device to be programmed. Along with the device type, the function
automatically loads the device parameters, start and end addresses and the buffer start address. Also, it

restores the Auto Programming command list if the selected device type has ever been selected
earlier, but the parameters listed above were changed during the programming session.

9.4.1.8 ACI_GetDevice

ACI_FUNC ACI_GetDevice(ACl Device_ Params * params);
Description

This function gets the device's part number (name) and the name of the manufacturer of the device being
programmed now (for example: AT89C51, Atmel; 28F128J3C, Numonyx, etc.).

© 2017 Phyton, Inc. Microsystems and Development Tools

346

CPI2-B1 In-System Device Programmer

9.4.1.9

9.4.1.10

9.4.1.11

9.4.1.12

ACI_GetLayer

ACI_FUNC ACI_GetLayer(ACIl_Layer Params * params);

Description
This function gets the parameters of a specified memory buffer and buffer's layer.

See also the ACI_Layer_Params structure description.

ACIl_CreateBuffer

ACI_FUNC ACIL_CreateBuffer(ACIl_Buffer_Params * params);

Description

This function creates a buffer with the parameters specified by the ACI_Buffer Params structure. The
ChipProg-02 program automatically assigns the buffer #0 so it is not necessary to create this buffer by a
separate command.

See also the ACI_Buffer Params structure description.

ACI_ReallocBuffer

ACI_FUNC ACI_ReallocBuffer(ACI_Buffer_Params * params);

Description

This function changes the size of the layer #0 in the memory buffer specified in the ACI_Buffer Params
structure.

See also the ACI_Buffer Params structure description.

ACl_ReadlLayer

ACI_FUNC ACI_ReadLayer(ACl_Memory Params * params);

Description

This function reads data from a specified memory buffer. The data size is limited by 16M Bytes.

Note! This function reads the data from the programmer's memory buffer but does not physically

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 347

read out the content of the selected target device. In order to physically read out the device
memory content, execute the programmer command (function) Read by means of the
ACI _ExecFunction or ACI_StartFunction with appropriate attributes.

9.4.1.13 ACI_WriteLayer

ACI_FUNC ACI_WriteLayer(AClL_Memory_ Params * params);
Description

This function writes data to a specified memory buffer. The data size is limited by 16M Bytes.

Note! This function writes the data to the programmer's memory buffer but does not physically
program the device. In order to physically write data from the buffer to the device's memory, execute
the programmer command (function) Program by means of the ACI ExecFunction or

ACI _StartFunction with appropriate attributes.

9.4.1.14 ACI_FillLayer

ACI_FUNC ACI_HllLayer(AClL_Memory_Params * params);
Description

This function fills a whole active layer of a specified memory buffer with a specified data pattern. This
function works much faster than the ACI_WriteLayer function which writes data to the buffer layer.

Note! This function fills the programmer's memory buffer with a specified data pattern but does not
physically write them to the device being programmed. In order to physically write data from the
buffer to the device execute the programmer command (function) Program by means of the
ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

9.4.1.15 ACI_GetProgrammingParams

ACI_FUNC ACI_GetProgrammingParams(ACI_Programming_Params * params);

Description

This function gets current programming parameters specified in the tab Option of the Program Manager
window (memory buffer configurations, programming options, test of the device insertion, etc.).

See the ACI_Programming Params structure description.

© 2017 Phyton, Inc. Microsystems and Development Tools

348 CPI2-B1 In-System Device Programmer

9.4.1.16 ACI_SetProgrammingParams

ACI_FUNC ACI_SetProgrammingParams(ACI_Programming_Params * params);

Description

This function sets programming parameters specified in the tab Option of the Program Manager window
(memory buffer configurations, programming options, test of the device insertion, etc.).

See also the ACI_Programming Params structure description.

9.4.1.17 ACI_GetProgOption

ACI_FUNC ACI_GetProgOption(ACIl_ProgOption_Params * params);
Description

This function gets current settings from the Device and Algorithm Parameters Editor window. As an
example see this window for one of the microcontrollers below.

Device and Algorithm Parameters Editor [F==E
Edit | MinValue | MaxValue | DefaultValue | AIIDefauIt|
Mame Value Description

Device Parameters

®Fuse Bits o

- Lock bits Lock bits

- Calibration Byte 00h Calibration value for the internal RC Oscillator
Algorithm Parameters

- Algarithm "In-System Programming"” | Programming algorithm

- Oscillator Frequency | 2500 kHz Oscillator frequency

- Delay afterVecis On | 120 ms Delay after Ve is On

- Programming Mode . Programming Mode

-Wee 500V Power supply voltage

Note! This function does not physically read the specified information from the device being
programmed. It reads from some virtual memory locations in the host PC's RAM, associated with
physical locations in the target device's memory and registers. If the option that you would like to
check is a property of the device's memory or registers, then first you have to execute the programmer
command (function) Read in the command group Device Parameters by means of the
ACI|_ExecFunction or ACI_StartFunction with appropriate attributes. Then you can read the execute
the ACI_GetProgOption function.

See also the ACI _ProgOption Params structure description.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 349

9.4.1.18 ACI_SetProgOption

ACI_FUNC ACI_SetProgOption(ACIl_ProgOption_Params * params);
Description

This function sets device-specific options and parameters, which are specified in the Device and
Algorithm Parameters Editor window. As an example see this window for one of the microcontrollers

below.
Device and Algorithm Parameters Editor [#FE=/E
Edit | MinValue | MaxValue | DefaultValue | AIIDefauIt|
Mame Value Description

Device Parameters

®Fuse Bits o

- Lock bits Lock bits

- Calibration Byte 00h Calibration value for the internal RC Oscillator
Algorithm Parameters

- Algarithm "In-System Programming"” | Programming algorithm

- Oscillator Frequency | 2500 kHz Oscillator frequency

- Delay afterVecis On | 120 ms Delay after Vee is On

- Programming Mode | .. Programming Mode

-Wee 500V Power supply voltage

Note! This function does not physically write the specified information into the device being
programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically program them into the device's memory you should execute
an appropriate Program command (function) in the command group Device Parameters, by means
of the ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

See also the ACI ProgOption Params structure description.

9.4.1.19 ACI_AlIProgOptionsDefault

ACI_FUNC ACI_AIlIProgOptionsDefault();
Description
This function sets default device-specific options and parameters specified in the Device and

Algorithm Parameters Editor window. These default parameter sets vary. They are defined by the
device manufacturers in the device data sheets.

© 2017 Phyton, Inc. Microsystems and Development Tools

350

CPI2-B1 In-System Device Programmer

9.4.1.20

9.4.1.21

9.4.1.22

Note! This function does not physically restore the default settings into the device being
programmed. It actually writes to some virtual memory locations in the host PC's RAM, associated
with physical locations in the target device's memory and registers. In order to complete programming
the device parameters and to physically fix them in the device's memory you should execute an
appropriate Program command (function) in the Device Parameters command group by means of
the ACI_ExecFunction or ACI_StartFunction with appropriate attributes.

ACI_ExecFunction

ACI_FUNC ACI_ExecFunction(ACIl_Function_Params * params);

Description

This function launches one of the programming operation (Read, Erase, Verify, etc.) specified by the
ACI_Function_Params. During execution the ACI_ExecFunction does not allow calling any other ACI
function until the programming operation, initiated by the ACI_ExecFunction function, completes the
job. The ACI_ExecFunction from the ACI_StartFunction that returns control immediately after it was
called.

ACI_StartFunction

ACI_FUNC ACI_StartFunction(ACIl_Function_Params * params);

Description

This function launches one of the programming operation (Read, Erase, Verify, etc.) specified by the
ACI_Function_Params and immediately returns control to the external application no matter whether the
programming operation, initiated by the ACI_StartFunction, has or has not completed. The
ACI_StartFunction is different from the ACI_ExecFunction. It is possible to check if the operation has
completed by the ACI_GetStatus function call. This allows monitoring the execution of programming
operations if they last for a long time.

ACI_GangStart

ACI_FUNC ACI_GangStart(ACl_GangStart Params * params);

Description

This function is used to control multiple device programmers only when the ChipProg-02 program was
launched from the command line with the /gang key to drive a CPI2-B1 gang programmer or a cluster of
multiple programmers connected to one PC! See also the ACI_Launch function. For controlling a single
CPI2-B1 device programmer use ACI_StartFunction or ACI_ExecFunction.

The ACI_GangStart function launches Auto Programming on multiple CPI2-B1 device programmers for

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 351

the programming socket specified in the SiteNumber parameter of the ACl PStatus_Params structure.
The function returns control immediately. In order to detect the ending time of the ACI_GangStart
execution, use the ACI_GetStatus function.

9.4.1.23 ACI_GetStatus

ACI_FUNC ACI_GetStatus(ACI_PStatus_Params * params);

Description

This function gets the programmer status that includes:
1) The status of the programming operation initiated by the ACI_StartFunction call (whether it has
completed or it is still in progress);

2) The device insertion status (certainly if this option is enabled in the tab Option of the Program
Manager window).

9.4.1.24 ACI_TerminateFunction

ACI_FUNC ACIL_TerminateFunction();

Description

This function terminates a current programming operation initiated by the ACI_StartFunction call.

9.4.1.25 ACI_GangTerminateFunction
ACI_FUNC ACI_GangTerminateFunction(ACl_GangTerminate Params * params);

Description

This function, similar to the ACI_TerminateFunction which is applicable for stopping a single device
programmer, is intended for terminating a current programming operation on one programming site
belonging to the multiprogramming cluster or a gang programmer. The programming site (or socket)
number is specified by the SiteNumber parameter from the ACI_GangTerminate_Params structure.

This function can be used only for the CPI2-B1 programmers launched in the gang mode (see the /gang
parameter among other command line keys for the ACI_Launch function). In order to terminate an
operation for a running single-site CPI2-B1 programmer use the ACI_TerminateFunction.

When the ACI_GangTerminateFunction initiates stopping a current operation it returns the control either
when the operation was successfully stopped or with a delay defined by the Timeout parameter.

9.4.1.26 ACI_FileLoad

ACI_FUNC ACI_FleLoad(ACI_File_Params * params);

© 2017 Phyton, Inc. Microsystems and Development Tools

352 CPI2-B1 In-System Device Programmer

Description

This function loads a specified file into a specified buffer's layer. The control program running on the host
PC should not worry about the file's format settings - the ChipProg-02 software takes care of this.

9.4.1.27 ACI_FileSave

ACI_FUNC ACI_FleSave(ACIL_File_Params * params);
Description

This function saves a specified file from a specified buffer's layer. The ChipProg-02 software enables
saving files in all popular formats: HEX, Binary, etc..

9.4.1.28 ACI_SettingsDialog

ACI_SettingsDialog();

Description

This macro opens the Configure > Preferences setting dialog. The dialog will be \isible irrespective of
the ChipProg-02 main window status; the main window can remain closed but the Configure >

Preferences setting dialog will appear on the computer screen, thus allowing manipulations in the
dialog.

9.4.1.29 ACI_SelectDeviceDialog

ACI_SelectDeviceDialog();
Description
This macro sends a command that opens the Select Device dialog. The dialog will appear on the

screen irrespective of the ChipProg-02 main window status; the main window can remain closed but the
Select Device dialog will appear on the computer screen.

9.4.1.30 ACI_BuffersbDialog

ACI_BuffersDialog();

Description

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 353

This macro opens the Memory Dump Window Setup dialog. The dialog will be visible irrespective of
the ChipProg-02 main window status; the main window can remain closed but the Memory Dump
Window Setup dialog will appear on the computer screen to allow the buffer setup. See the dialog

example below.

Memory Dump Window Setup

Display Options Checksum

() Buffer #1

Display Data As:
Bytes
(@ Words (16 bits)
() Double Words (32 bits)
() Quad Words (64 bits)

Display Format
(O Binary

(@ Hexadecimal
() Decimal

Options
[v] ASCll pane
[] Limit dump to layer size
[]Signed decimal and hex values
[] Always display '+ or -
[]Leading zeroes for decimal numbers
[]Reverse bytes inwords (MSB first)
[]Reverse words in dwords

[]Reverse dwords in qwords

Monprintable ASCIH characters

[]Replace characters 0x00...0x20

Replace characters 0x80...0xFF
Replace with: ()" (dot)

(@ Space

f oK ¥ Cancel

e

Help

© 2017 Phyton, Inc. Microsystems and Development Tools

354 CPI12-B1 In-System Device Programmer

9.4.1.31 ACI_LoadFileDialog

ACI_LoadFleDialog();

Description

This macro opens the Load File dialog. The dialog will be visible irrespective of the ChipProg-02 main
window status; the main window can remain closed but the Load File dialog will appear on the
computer screen. See the dialog example below.

< Load File

File Name:

‘ ARay\TESTSI\PICV16C73A6\GIBR10.HEX R) Browse..

File Format Buffer to load file to:

(@) Standard/Extended Intel HEX (*.hex*.mcs) (@ Buffer #0
(_)Binary image (* bin) () Buffer #1
{ IMotorola S-record {*.hex*.s%*.mot)
()POF (* pof)

{)JEDEC (*jed)

(OPRG (" prg)

{ JHoltek OTP (*.otp)

() Angstrem SAV [* sav)

(IASCI Hex (*.bd)

()ASCI Octal {* i)

Layerto load file to:

(@ Code (32 MB). bytes
(OlInvalid Block Map (128 KB), bytes

Start address for binary image:)

Offsetfor loading addresses: |0 w

< OK & Cancel © Help

9.4.1.32 ACI_SaveFileDialog

ACI_SaveFileDialog();

Description

This macro sends a command that opens the Save File dialog. The dialog will be Visible irrespective of
the ChipProg-02 main window status; the main window can remain closed but the Save File dialog will

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 355

9.4.1.33

9.4.1.34

appear on the computer screen. See the dialog example below.

< Save file from buffer

File name
|C:RProjects\PauIAmrides‘LLasersRMajorCaliber.heyd w 1, Browse..
Addresses File format
Start [0 v (@ Standard/Extended Intel HEX
Binary image
En ryimag
nd: |0x107FFFF v] PO
POF
All O
() JEDEC
L} (PRG
()ASCI Hex
(JASCI Octal
Buffer to save file from: Layerto save file from:
(@ Buffer #0 (@ Code (32 MB), bytes
() Buffer #1 (lnvalid Block Map (128 KB). bytes
& 0K ¥ Cancel &€ Help

ACI_SerializationDialog

ACI_SerializationDialog();
Description
This macro sends a command that opens the Serialization, Checksum, and Log Dialog.

ACIl_SetConnection

ACI_FUNC ACI_SetConnection(ACIl_Connection_Params * params);

Description

This function identifies a current device programmer connection. Use this function when you control a
number of device programmers by means of multiple calls of the ACI Launch function. Each connection
gets its own unique identifier. Executing of the ACI_Launch function returns the Connectionld as part of
the ACI_Launch_Params structure.

© 2017 Phyton, Inc. Microsystems and Development Tools

356

CPI2-B1 In-System Device Programmer

9.4.1.35

9.4.1.36

9.4.2

9.4.2.1

After establishing the connection, all the ACI functions following the ACI_SetConnection function will
work exclusively with the established connection.

When ACI controls only one CPI2-B1 programmer it is not necessary to execute the ACI_SetConnection
function; the ACI_Launch function automatically assigns a Connectionld that is the next one in order.

The Connectionld can be always checked by executing the function ACI_GetConnection.

ACI_GetConnection

ACI_FUNC ACI_GetConnection(ACIl_Connection_Params * params);
Description

This function allows getting the identifier of a current device programmer connection. If a number of
single CPI2-B1 programmers were launched, one after another, by multiple executions of the
ACI_Launch function, then executing the ACI_GetConnection function returns a current Connectionld
parameter as a part of theACl_Launch_Params structure.

See also ACI_SetConnection.
ACIl_ConnectionStatus

ACI_FUNC ACI_ConnectionStatus();

OnuncaHve

MonyunTb cTaTyC TeKyllLero coeguHeHus. Ecnm coeguHeHre akTMBHO, T.e. NporpaMmmMatop 3anyLuieH u
OTBEYaET Ha 3anpochkl, To Kog Bo3BpaTta byaetT ACI_ERR_SUCCESS. Ec/1 no Kakum-imbo npuymHam
coeauHeHne 6bio npepsaHo, To BepHeTcd ACI_ ERR_NOT_CONNECTED.

Cwm. Takxe ACI_SetConnection, ACI_GetConnection.

ACI Structures

This sections contains alphabetical list of all ACI structures.

ACI_Launch_Params

typedef struct tagACl_Launch_Params

UINT Size; // (in) Size of structure, in bytes

LPCSTR ProgrammerExe; // (in) Programmer executable file name

LPCSTR CommandLine; // (in) Optional programmer command-line parameters
BOOL DebugMode; // (in) Debug mode. Programmer window is not hidden

} ACI_Launch_Params;

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 357

This is the name of the programmer executable file. If the parameter does not
include a full path then the program will search for the UprogNT2.EXE file into
the folder where the ACI.DLL resides.

Programmer Exe The target folder name, where the the UprogNT2.EXE file resides, is defined
by the parameter "Folder" of the ""HKLM\SOFTWARE\Phyton\Phyton
ChipProgUSB Programmern\x.yy.zz" key. It is supposed that multiple
ChipProg-02 versions can be installed on the host computer.

This structure member specifies the command line options. One of the option
is NULL (no keys). If the host computer drives a cluster of multiple
programmers then the only way to launch a certain programmer is to specify
the /N<serial number> for the CommandLine structure member.

CommandLi ne

This key controls the ChipProg-02 main window visibility. Setting TRUE for
Debughbde this structure member makes the ChipProg-02 main window visible. Then you
can manipulate with the programmer using its user interface - open windows,
set any programmer resources, execute programming operations, etc..

See also: ACI_Launch

9.4.2.2 ACI_ErrorString_Params

typedef struct tagACl_ErrorString_Params

UINT Size; // (in) Size of structure, in bytes
CHAR ErrorString[256]; // (out) Error string describing error code ACI_ERR ... returned by
// call to ACI function

} ACI_ErrorString_Params;

ErrorString String describing the error returned by the last ACI function call.

See also: ACI ErrorString
9.4.2.3 ACI_Buffer_Params

typedef struct tagACl_Buffer_Params

{
UINT Size; // (in) Size of structure, in bytes
DWORD LayerOSizelLow; // (in/out) Low 32 bits of layer O size, in bytes
DWORD LayerOSizeHigh; // (in/out) High 32 bits of layer O size, in bytes

// Layer size is rounded up to a nearest value supported by progi
LPCSTR BufferName; // (in) Buffer name
UINT BufferNumber; // For ACI_CreateBuffer(): out: Created buffer number
// For ACI_ReallocBuffer(): in: Buffer number to realloc
UINT NumBuffers; // (out) Total number of currently allocated buffers
UINT NumLayers; // (out) Total number of layers in a buffer

} ACI_Buffer_Params;

© 2017 Phyton, Inc. Microsystems and Development Tools

358 CPI2-B1 In-System Device Programmer

This structure member represents buffer layer #0's size in Bytes. This
size lies in the range between 128K Bytes and 32G Bytes (may be
changed in the future). The ChipProg-02 allows assigning buffers with

Layer 0Si zeLow, fixed sizes only (see the list on the picture below). Any intermediate value

Layer 0Si zeHi gh will be automatically rounded up to one of the reserved buffer sizes. For
example, if you enter '160000' the programmer will assign a 1MB buffer
layer.

Since it is used with the ACI CreateBuffer function this structure member
represents the name of the buffer that will be created. If used with the
ACI_ReallocBuffer function will be ignored.

Buf f er Nanme

After calling the ACI_CreateBuffer function this structure member returns
Buf f er Nunber the created buffer's number. After calling the ACI_ReallocBuffer function -
the number of the buffer, size of which should be changed (re-allocate).

NumBuf f er s Th?s structure member represents the current number of memory buffers
being opened.

This structure member represents the number of layers in memory

Num_ayers A .
buffers. This value is the same for all opened buffers.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference

9.4.2.4

Buffer Configuration

Buffer name, Code settings EEPROM

Buffer Mame

Buffer #0

Size of layer 'Code”.

1MB
2MB

4 MB
GMB
16 MB
{32 MB
64 MB
128 MB
256 MB
512 MB
1GEB
2GB
4GB
8GB
16 GB
32 GB

[

128 KB i

4 OK

¥ Cancel

€ Help

See also: ACI_CreateBuffer, ACI ReallocBuffer

ACIl_Config_Params
typedef struct tagACl_Config_Params

UINT Size;
LPCSTR FileName;
} ACI_Config_Params;

// (in) Size of structure, in bytes
// (in) Options file name to load/save configuration

359

Fi | eNanme

This is the name of the file that configures the
programmer.

See also: ACI LoadConfigFile, ACI SaveConfigFile

© 2017 Phyton, Inc. Microsystems and Development Tools

360

CPI2-B1 In-System Device Programmer

9.4.25

9.4.2.6

9.4.2.7

9.4.2.8

ACI_ProjectParams

typedef struct tagACl_Project Params

{
UINT Size; // (in) Size of structure, in bytes

LPCSTR ProjectName; // (in) Project file name
} ACI_Project Params;

ProjectName Project file name with extension.

See also: ACI LoadProject.

ACI_Connection_Params

typedef struct tagACl_Connection_Params

UINT Size; // (in) Size of structure, in bytes
LPVOID Connectionld; // ACl1_SetConnection(): (in), ACI_GetConnection(): (out)
// Connection identifier
} ACI_Connection_Params;

Connectionl d An identifier of the connection with a particular device programmer. This is an

abstract parameter that means nothing for the ACI user.

See also: ACI_SetConnection, ACI_GetConnection.

ACIl_Device_Params

typedef struct tagACl_Device_Params

UINT Size; // (in) Size of structure, in bytes
CHAR Manufacturer[64]; // (in || out) Device Manufacturer
CHAR Name[64]; // (in |] out) Device Name

} ACI_Device_Params;

Manuf act urer The manufacturer of the device being programmed

Name The device part number as it is displayed in the

programmer's device list

See also: ACI _SetDevice, ACI GetDevice

ACIl_File_Params

typedef struct tagACl_File_Params
{

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 361

UINT Size; // (in)
LPCSTR FileName; // (in)
UINT BufferNumber; // (in)
UINT LayerNumber; // (in)
UINT Format; // (in)
DWORD StartAddressLow; // (in)
//
DWORD StartAddressHigh; // (in)
//
DWORD EndAddressLow; // (in)
DWORD EndAddressHigh; // (in)
DWORD OffsetLow; // (in)
DWORD OffsetHigh; // (in)

} ACI_File_Params;

Size of structure, in bytes

File name

Buffer number

Layer number

File format: see ACI_PLF_... and ACI_PSF_xxx constants
Low 32 bits of start address for ACI_FileSave().

For ACI_FileLoad(): Ignored if Format != ACI_PLF _BINARY
High 32 bits of start address for ACI_FileSave().

For ACI_FileLoad(): Ignored if Format !'= ACI_PLF_BINARY
ACl_FileSave(): Low 32 bits of end address
ACI_FileSave(): High 32 bits of end address

Low 32 bits of address offset for ACI_FileLoad()

High 32 bits of address offset for ACI_FilelLoad()

Fi | eNanme

The name of the file to be loaded to the CPI2-B1 buffer.

Buf f er Number

The ordinal number of the destination buffer. Buffer numbers begins from zero.

Layer Nurmber

The ordinal number of the memory layer in the buffer. Layer numbers begins

from zero.

For mat

The loadable file's format. See the description of the ACI_PLF_XXX*
constants in the aciprog.h header file (see below).

St art Addr essLow,
St art Addr essHi gh

1) If used with the ACI_FileSawve function this parameter specifies the first
(start) address in the source memory layer, from which the file will be saved.
2) If used with the ACI_FileLoad function, but only when it loads a file in the
binary format (Format == ACI_PLF_BINARY), this parameter specifies the
first (start) address of the destination memory layer, in which the file will be
loaded. Binary images do not carry any addresses for the file loading.

EndAddr essLow,
EndAddr essHi gh

If used with the ACI FileSave function this parameter defines the last (end)
address of the source memory layer, from which the file will be saved.

O fset Low,
O f set Hi gh

The address offset that shifts the file position in the destination memory layer.
The offset can be negative as well as positive.

This is the bit definition from the aciprog.h header file:

*/| ACI File formats for ACI_FileLoad()

#define ACl_PLF_INTEL_HEX
#define ACl_PLF_BINARY
#define ACI_ PLF_MOTOROLA_S

#define ACl_PLF_POF
#define ACl_PLF_JEDEC
#define ACl_PLF_PRG
#define AC|_PLF_OTP
#define ACl_PLF_SAV

#define ACl_PLF_ASCIl_HEX
#define AC_PLF_ASCIl_OCTAL

©CoOo~NOOOTh~WNPEFEO

See also: ACI_FileLoad, ACI_FileSave.

/! Standard/Extended Intel HEX
/I Binary image

/I Motorola S-record

/I POF

/I JEDEC

/I PRG

/I Holtek OTP

/I Angstrem SAV

/I ASCII Hex

/I ASCII Octal

© 2017 Phyton, Inc. Microsystems and Development Tools

362

CPI2-B1 In-System Device Programmer

9.4.2.9

ACIl_Function_Params

typedef struct tagACl_Function_Params

{
UINT Size;

LPCSTR FunctionName;

UINT BufferNumber;

BOOL Silent;

CHAR ErrorMessage[512];
} ACI_Function_Params;

// (in) Size of structure, in bytes

// (in) Name of a function to execute. If a function is under a sul
// To execute Auto Programming, set FunctionName to NULL, empt
// (in) Buffer number to use

// (in) On error, do not display error message box, just copy errol
// (out) Error message string if ACl_ExecFunction() fails

The name of the CPI2-B1 function is one of those listed in the window Functions
of the ChipProg-02 Program Manager tab. They are divided in two group (see the
picture below): (1) the main functions applicable to a majority of the target devices
(Blank Check, Erase, Read, Program, Verify) and (2) the device-specific lower
level functions accessible through expandable sub-menus (for example, Program
Device Parameters, Erase Sectors, Lock Bits > Program Lock Bit 1,
EEPROM > Read, etc.). For such device-specific functions the FunctionName
Functi onNane should be specified in the following way: <List name>"<Function name> (for
example, Device Parameters®Program).

To launch the AutoProgramming batch set the FunctionName either to NULL,
a blank string, or the "Auto Programming".

There is no restrictions in use of uppercase and lowercase characters in the
function names.

Buf f er Nunber The ordinal number of the buffer the function operates with.

If this parameter is TRUE, then the error message dialog will be suppressed, the
function execution will be terminated and will return the

Si |l ent . .
ACI_ERR_FUNCTION_FAILED code, and the error message will be copied to
the ErrorMessage.

Error Message The destination of the error message that will be issued if the function fails.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 363

Program Manager =

Program Manager Options Statistics

Device Status:

Buffer: | Buffer #0: Code (16 MB). bytes, ID location (128 KB). bytes, Data (128 KB) ~

Functions
® Blank Check 5
- Program . . @ Execute
- Read Main functions
-~ Verify Repetitions:
- Erase
1 o
- Data
= Device Parameters & 1D .
E = -r- 4 EditAuto...
- Blank Check Device-specific 4
-~ Program functions @ Help
i Read
----- Werify
- Auto Programming
Checking memory
See also: ACI_ExecFunction, ACI_StartFunction, ACI_GetStatus
9.4.2.10 ACI_GangStart_Params
typedef struct tagACl_GangStart_Params
{
UINT Size; // (in) Size of structure, in bytes
UINT SiteNumber; // (in) Site number to start auto programming at
UINT BufferNumber; // (in) Buffer number to use
BOOL Silent; // (in) On error, do not display error message box. Use ACI_GetStat

} ACl_GangStart_Params;

The number of the device programmer socket in the gang programmer or in a
programming cluster comprised of multiple CPI2-B1 programmers for which
the ACI GangsStart function is launched. The site (socket) numbers begin
from #0.

Si t eNummber

The ordinal number of the memory buffer, content of which is required by the

Buf f er Nunber
ACI_GangsStart function. Numbers of CPI2-B1 memory buffers begin from #0.

If this parameter is TRUE, then the error message dialog will be suppressed,
the function execution will be terminated and the
ACI_ERR_FUNCTION_FAILED code will be returned.. Use the

ACI GetStatus function to receive the error message.

Si | ent

© 2017 Phyton, Inc. Microsystems and Development Tools

364 CPI2-B1 In-System Device Programmer

See also: ACI _GangStart, ACI_GetStatus

9.4.2.11 ACI_GangTerminate_Params

typedef struct tagACl_GangTerminate_Params

UINT Size; // (in) Size of structure, in bytes

INT SiteNumber; // (in) Site number to terminate operation (-1 == all sites)

INT Timeout; // (in) Timeout in milliseconds (-1 == infinite) to wait for operat
BOOL SiteStopped; // (out) TRUE if operation was stopped, FALSE if timeout occurred

} ACl_GangTerminate_Params;

The site (socket) number you want terminating a current operation on. Socket
numbers begin from 0 (zero). If you specify SiteNumber = -1 (minus one) this will

Si t eNunber) . . .
terminate operations on all sites of the gang machine.
A time interval in milliseconds, during of which the ACI GangTerminateFunction
holds expecting an acknowledgment of the successful operation termination. The
function will return control either upon getting such an acknowledgment or upon
Ti meout expiring a specified Timeout.

If you specify the Timeout = -1 (minus one) it will never expire.

Si t eSt opped

This parameter indicates whether the ACI_GangTerminateFunction succeeded. In
case of successful termination an operation before expiring the Timeout the
SiteStopped parameter sets TRUE. Otherwise, it will be set FALSE.

See also: ACI_GangTerminateFunction, ACI_TerminateFunction.

9.4.2.12 ACI_Layer_Params

typedef struct tagACl_Layer Params

{
UINT Size;

UINT BufferNumber;

UINT LayerNumber;

DWORD LayerSizelLow;

DWORD LayerSizeHigh;

DWORD DeviceStartAddrLow;
DWORD DeviceStartAddrHigh;
DWORD DeviceEndAddrLow;
DWORD DeviceEndAddrHigh;
DWORD DeviceBufStartAddrLow;
DWORD DeviceBufStartAddrHigh;
UINT UnitSize;

BOOL FixedSize;

CHAR BufferName[64];

CHAR LayerName[64];

UINT NumBuffers;

// (in)
// (in)
// (in)
// (out)
// (out)
// (out)
// (out)
// (out)
// (out)
// (out)
// (out)
// (out)
// (out)
// (out)
// (out)
// (out)

Size of structure, in bytes

Number of buffer of interest, the first buffer number i
Number of layer of interest, the first layer number is (
Low 32 bits of layer size, in bytes

High 32 bits of layer size, in bytes

Low 32 bits of device start address for this layer

High 32 bits of device start address for this layer

Low 32 bits of device end address for this layer

High 32 bits of device end address for this layer

Low 32 bits of device memory start address in buffer foi
High 32 bits of device memory start address in buffer f
Size of layer unit, in bits (8, 16 or 32)

Size of layer cannot be changed with ACI_ReallocBuffer(C
Buffer name

Layer name, cannot be changed

Total number of currently allocated buffers

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 365

UINT NumLayers;
} ACI_Layer_Params;

// (out) Total number of layers in a buffer

Buf f er Number

The ordinal number of the memory buffer, content of which is required by
the ACI_GetLayer function. Numbers of CPI2-B1 memory buffers begin
from #0.

Layer Nunber

The ordinal number of the layer in the memory buffer, the content of which
is required by the ACI GetlLayer function. The layer numbers begins from
#0.

Layer Si zeLow,
Layer Si zeHi gh

Here the function returns the range of the memory layer's addresses in
bytes.

Devi ceSt art Addr Low,
Devi ceSt art Addr Hi gh

Here the function returns the device's start address for the selected
memory layer. This address is the device's property and strictly depends
on the device type; usually this value is zero. Do not mix it up with the
start address of a programming operation that can be shifted by a certain
offset value.

Devi ceEndAddr Low,
Devi ceEndAddr Hi gh

Here the function returns the device's end address for the selected memory
layer. This address is the device's property and strictly depends on the
device type. Do not mix it up with the end address of a programming
operation editable in the setup dialog. The selected layer's address range
can be defined as a difference between the end address and the start
address plus 1.

Devi ceBuf St art Addr L
ow,
Devi ceBuf St art Addr H
i gh

Here the function returns the start address for the selected memory buffer -
usually this value is zero.

This structure member specifies formats of the data in a memory layer: 8

Uni t Size for the 8-bit devices, 16 - for 16-bit devices and 32 for 32-bit devices.
This flag, if TRUE, disables resizing the memory layer by the
Fi xedSi ze ACI ReallocBuffer function. There is one restriction on use of this flag:

since the layer #0 is always resizeable the FixedSize is always FALSE
for the layer #0.

Buf f er Name

The name of the memory buffer as it was defined in the CPI2-B1 interface
or by the ACI_CreateBuffer function call.

Reserned name of the memory buffer's layer. It cannot be changed by the

Layer Name ACI.DLL user.
NunmBuf f er s The number of the assigned memory buffers.
NunLayer s The number of layers in the programmer's memory buffers. This is a pre-

defined device-specific value that is the same for all memory buffers.

See also: ACI_GetlLayer

© 2017 Phyton, Inc. Microsystems and Development Tools

366 CPI2-B1 In-System Device Programmer

9.4.2.13 ACI_Memory_Params

typedef struct tagACl_Memory_Params

{
UINT Size;

UINT BufferNumber;
UINT LayerNumber;
DWORD AddressLow;
DWORD AddressHigh;
PVOID Data;
DWORD DataSize;
DWORD Fillvalue;

} ACI_Memory_Params;

// (in) Size of structure, in bytes

// (in) Number of buffer of interest, the first buffer number is 0

// (in) Number of layer of interest, the first layer number is O

// (in) Low 32 bits of address, in layer units (natural to device addi
// (in) High 32 bits of address, in layer units (natural to device adc
// (in |] out) Buffer to data to read to or write from

// (in) Size of data to read or write, in layer units, max. 16 MB (Ox!
// (in) Value to fill buffer with, used by ACI_FillLayer() only

Buf f er Nunber

The ordinal number of the buffer to read from or to write into. The buffer
numerical order begins from zero.

Layer Number

The ordinal number of the memory buffer's layer to read from or to write into.
The layer numerical order begins from zero.

The start address in the memory layer to read from or to write into

Addr essLow, represented in the units specified by the chosen device manufacturer - Bytes,
Addr essHi gh Words, Double Words. This structure member is ignored in case of use with
the ACI_FillLayer function.

Since these are used with different ACI functions this structure member has
different meanings.In case of use with the ACI ReadLayer function it
represents the pointer to the data read out from the CPI2-B1 buffer's layer. In
Dat a case of use with the ACI_WriteLayer - the pointer to the data to be written to
the CPI2-B1 buffer's layer. The Data is ignored if it is used with the

ACI FillLayer function.

This structure member represents the data format given in memory units
Dat aSi ze specified by the device manufacturer (Bytes, Words or Double Words). The
program ignores the DataSize if it is used with the ACI FillLayer function.

This is the data pattern that fills an active CPI2-B1 buffer's layer by means of
the ACI_FillLayer function. If, for example, the FillValue is presented in the
Fill Val ue DWORD format then the 8-bit memory layers will be filled with the lower byte
of the FillValue pattern, the 16-bit layers - with the lower 16-bit word and the
32-bit layers - with a whole FillValue pattern.

See also: ACI ReadLayer, ACI WriteLayer, ACI FillLayer

9.4.2.14 ACI_ProgOption_Params

typedef struct tagACl_ProgOption_Params

UINT Size;
LPCSTR OptionName;
CHAR Units[32];

// (in) Size of structure, in bytes
// (in) Name of the option. For lists, it should be in the form "Lis
// (out) Option measurement units (“'kHz", "V", etc.)

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 367

CHAR OptionDescription[64]; // (out) Description of the option
CHAR ListString[64]; // (out) For ACI_PO_LIST option: Option string for Value.Listlndex

UINT OptionType; // (out) Option type: see ACI_PO_xxx constants
BOOL ReadOnly; // (out) Option is read-only
union // (in || out) Option value
{
LONG LongValue; // (in || out) Value for ACI_PO_LONG option
FLOAT Floatvalue; // (in || out) Value for ACI_PO_FLOAT option
LPSTR String; // (in || out) Pointer to string for ACI_PO_STRING option
ULONG CheckBoxesValue; // (in || out) Value for ACI_PO_CHECKBOXES option
UINT Statelndex; // (in || out) State index for ACI_PO_LIST option
LPBYTE Bitstreanm; // (in || out) Pointer to bitstream data for ACI_PO BITSTREAM option
} Value;
UINT VSize; // For ACl_SetProgOption():
// in: Size of Bitstream if OptionType == ACI_PO_BITSTREAM
// For ACl_GetProgOption():
// in: Size of buffer pointed by Bitstream if OptionType == ACI_P(
// in: Size of buffer pointed by String if OptionType == ACI_PO_ST
// out: Size of buffer needed for storing Bitstream data if OptionT
// Set Value.Bitstream to NULL to get buffer size without sett
// out: Size of buffer needed for storing String if OptionType ==
// Set Value.String to NULL to get buffer size without setting
UINT Mode; // (in) For ACI_SetProgOption(): SEE ACI_PP_MODE_... constants

} ACI_ProgOption_Params;

Opt i onNare

The name of the programming option - for example "Vcc". For the ACI_PO_LIST
- type options, where the options are grouped into a list, you should specify both
the list name and the option name in the following way: <List name>"<Option
name> (For example, Configuration_bits”Generator. There are no restrictions
on use of uppercase and lowercase characters in the option names.

Units

After executing the ACI_GetProgOption function this structure member returns
an abbreviation of the units, in which the programmer represents or measures
the OptionName. For example, for the Vcc structure member, Units = "V".

Opti onDescri ption

After executing the ACI GetProgOption function this structure member returns
the option description.

After executing the ACI_GetProgOption function for the ACI_PO_LIST - type
options this structure member returns a string that describes the current

Li stString . i
option's value or status. For example, XT - Standard Crystal for the option
Configuration bits*Generator.
After executing the ACI_GetProgOption function this structure member returns

ot i onType the option's presentation format - for example: integer, floating point, list,
bitstream, etc.. See the ACI_PO_xxx* constant description in the aciprog.h
header file below.

ReadOnl y Setting ReadOnly=TRUE disables modification of the option specified by the
ACI_GetProgOption function.
Use of this union depends on the ACI_PO_LONG* option type as itis shown in
the matrix below:

Val ue Option type Use of the Value union

ACI_PO_LONG The option is in the Value.LongValue

© 2017 Phyton, Inc. Microsystems and Development Tools

368

CPI2-B1 In-System Device Programmer

ACI_PO_FLOAT

The option is in the Value.FloatValue

ACI_PO_STRING

The option is represented as a string, the pointer on w hich
is in the Value.String. See the note below .

ACl_PO_CHECKBOXES

The option represents a 32-bit integer w ord, in w hich you
can individually toggle each bit that represents a particular
flag in the option setting dialog. The option is in the
Value.CheckBoxesValue. See, for example, the Fuse
setting dialog for the ATtiny45 MCU implemented as an array
of check boxes.

ACI_PO_LIST

It represents a list of alternative choices. Only one of them
can be selected at a time, so the parameter changes its
value in arange 0, 1, 2 to N. The option is in the
Value.CheckStateIlndex. See, for example, the Oscillators
setting dialog for the PIC12F509 MCU implemented as an
alternatively chosen radio buttons

ACl|_PO_BITSTREAM

Stream of bits. This option type is not in use yet but can be
used for future applications.

Size of the buffer assigned for storing the string if the option type is the

VSi ze
ACI_PO_STRING. See the note below.
Mode of using of the structure member Value (See the description of the
ACI PP xxx** constants in the aciprog.h<) header file:
The Mode setting Use of the parameter Value
(value)
ACI_PP_MODE_VALUE 1) For measuring (getting): use the Value in order to get an
actual Option value;
2) For setting: use the Value to set a particular Option
value.
ACI_PP_MODE_DEFAULT |1) If used with the ACI_GetProgOption function it issues a
_VALUE command to put the default Option value into the Value.
2) If used with the ACI_SetProgOption function, the Value
w ill be ignored; the Option will be set to the default level
Mode defined in the CPI2-B1 hardw are.

AC|_PP_MODE_MIN_VAL
UE

1)If used with the ACI_GetProgOption function it commands
to put the minimal Option value into the Value.

2) If used with the ACI_SetProgOption function the Value
w ill be ignored; the Option will be set to the minimal level
defined in the CPI2-B1 hardw are, if it is possible for the
Option of this type.

ACI_PP_MODE_MAX_VAL
UE

1) If used with the ACI GetProgOption function it commands
to put the maximal Option value into the Value.

2) If itis used with the ACI_SetProgOption function the
Value will be ignored; the Option will be set to the maximal
level defined in the CPI2-B1 hardw are, if it is possible for
the Option of this type.

This is the bit definition from the aciprog.h header file:

*/[ACl Programming Options defines

#define ACI_PO_LONG
#define ACI_PO_FLOAT

0
1

/I Signed integer option
/I Floating point option

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 369

#define AClI_PO_STRING 2 [/ String option

#define ACI_PO_CHECKBOXES 3 /I 32-bit array of bits

#define ACI_PO_LIST 4 /I List (radiobuttons)

#define ACI_PO_BITSTREAM 5 /I Bit stream - variable size bhit array

**/| AClI Programming Option Mode constants for ACl_GetProgOption()/ACI_SetProgOption()
#define ACl_PP_MODE_VALUE 0 /I Get/set value specified in Value member of the
ACI_ProgOption_Params structure

#define ACI_PP_MODE_DEFAULT_VALUE 1 // Get/set default option value, ignore Value member
#define ACI_PP_MODE_MIN_VALUE 2 |/ Get/set minimal option value, ignore Value
member

#define ACI_PP_MODE_MAX VALUE 3 /Il Get/set maximal option value, ignore Value
member

Note for use of the ACI_GetProgOption:

In order to get the buffer size necessary for storing the Option ACI_PO_STRING, you should make the
first call of the ACI_GetProgOption function with the Value.String= NULL. Then the function will return
the VSize equal to the buffer size, including zero at the string's end. In your program, assign the buffer of
this size, put the Value.String into the buffer pointer and call the ACI_GetProgOption again.

© 2017 Phyton, Inc. Microsystems and Development Tools

370

CPI12-B1 In-System Device Programmer

« Fuse Bits

[]CKSELT
[|CKSEL2
[]CKSEL3
[w]SUTO
[]suT1

[]BODEN

[]BODLEVEL
[|BOOTRST
[v]BOOTSZ0
[«]|BOOTSZ1
[|EESAVE
[JcKOPT

Check all Uncheck all

Mote
'Checked' option means logical state "0"

i Cancel

All default

£ Help

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 371

i Oscillator

(LP oscillator

(XT oscillator

(JHS oscillator

()EC oscillator with CLKOUT on RAG
()EC oscillator with port on RAG
(JHS oscillator with PLL enabled

() External RC oscillator with port on RAS

(lInternal RC oscillator with port on RAG

(linternal RC oscillator with CLKOUT on RA6

(@ External RC oscillator with CLKOUT on RAG

e oK K Cancel

© Help

See also: ACI_GetProgOption, ACI_SetProgOption

9.4.2.15 ACI_Programming_Params

typedef struct tagACl_Programming Params

{
UINT

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
UINT
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Size; // (in)
InsertTest; // (in
CheckbDeviceld; // (in
ReverseBytesOrder; // (in
BlankCheckBeforeProgram; // (in
VerifyAfterProgram; // (in
VerifyAfterRead; // (in
SplitData; // (in
DeviceAutoDetect; // (in
DialogBoxOnError; // (in
AutoDetectAction; // (in
DeviceStartAddrLow; // (in
DeviceStartAddrHigh; // (in
DeviceEndAddrLow; // (in
DeviceEndAddrHigh; // (in

DeviceBufStartAddrLow; // (in
DeviceBufStartAddrHigh; // (in

} ACI_Programming_Params;

Size of structure, in bytes
out) Test if device is attached
out) Check device identifier
out) Reverse bytes order in buffer
out) Perform blank check before programming
out) Verify after programming
out) Verify after read
out) Split data: see ACI_SP_xxx constants
out) Auto detect device in socket (not all of the prc
out) On error, display dialog box
out) Action to perform on device autodetect or "Start
out) Low 32 bits of device start address for program
out) High 32 bits of device start address for progran
out) Low 32 bits of device end address for programmir
out) High 32 bits of device end address for programmi
out) Low 32 bits of device memory start address in ht
out) High 32 bits of device memory start address in |

I nsert Test
(Irrelevant for CPI2-B1)

This is the command to check the device insertion before starting any

programming operations on the device. The procedure will check if every chip
leads have good contactin the programming socket.

CheckDevi cel d

device programming.

This is the command to check a unique internal device identifier before the

© 2017 Phyton, Inc. Microsystems and Development Tools

372

CPI2-B1 In-System Device Programmer

Rever seByt esOr der

This is the command to reverse the byte order in 16-bit words when
programming the device, reading it or verifying the data. This structure member
does not effect the data value in the CPI12-B1 memory buffers - these data remain
the same as they were loaded.

Bl ankCheckBef or ePr og
ram

This is the command to check whether the device is blank before executing the
Program command.

Veri fyAfterProgram

This is the command to verify the data written into the device everytime after
executing the Program command.

VerifyAfterRead

This is the command to verify the data written into the device everytime after
executing the Read command.

SplitData

This is the command to split data in accordance with the value of the constants
ACI_SP_xxx* in the aciprog.h file (see below). This allows 8-bit memory devices
to be cascaded in multiple memory chips to be used in the systems with 16- and
32-bitaddress and data buses.

Devi ceAut oDet ect
(Irrelevant for CPI2-B1)

This is the command to scan all the device's leads in a process of the device
insertion into the programming socket. If the DeviceAutoDetect is TRUE the
programmer will check whether all of the device's leads are reliably gripped by
the programmer socket's sprung contacts. Only when the reliable device
insertion is acknowledged, the program launches a chosen programming
operation, script or a batch of single operations programmed in the Auto
Programming dialog. (Irrelevant for CPI12-B1)

Di al ogBoxOnError

If this structure member is TRUE then any error that occurs in any programming
operation will generate error messages and will open associated dialogs. If this
attribute is FALSE the error messages will not be issued.

Aut oDet ect Act i on
(Irrelevant for CPI2-B1)

If the DeviceAutoDetect is TRUE then values of the ACI_AD_xxx** constants in
the aciprog.h file define a particular action triggered either on manual pushing
the Start button or upon auto detection of reliable insertion of the device into the
rogrammer's socket (see below). (Irrelevant for CPI2-B1)

AutoDetectAction [What to do (action)

value

ACI_AD_EXEC_FUNC|Launch the programming operation (function) currently highlighted
TION in the Program Manager tab.

ACI_AD_EXEC AUT [Launch a batch of single operations programmed in the Auto

(6] Programming dialog.

ACI_AD_EXEC _SCRI |Performthe script specified in the Script File dialog.

PT

ACI_AD_DO_NOTHIN [Do not act (ignore). Then it is possible to resume operations only by
G executing either the ACI ExecFunction or ACI StartFunction.

Devi ceSt ar t Addr Low,
Devi ceSt art Addr H gh

This structure member defines a physical start address of the device to perform
a specified programming operation (function). For example: "...read the chip
content beginning at the address 7Fh". Not all the functions use this parameter.

Devi ceEndAddr Low,
Devi ceEndAddr H gh

This parameter defines a physical end address, beyond which a specified
programming operation (function) will not proceed. For example: "...program the
chip until the address OFFh". Not all the programmer functions use this
parameter.

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 373

Devi ceBuf St art Addr Lo
w,
Devi ceBuf St ar t Addr Hi
gh

This structure member defines the buffers layer's start address from which to
perform a specified programming operation (function). For example: "...read the
chip and move the data to the buffer beginning atthe address 10h". Not all the
programmer functions use this parameter.

This is the bit definition from the aciprog.h header file:

* [/ ACI Data Split defines

#define ACI_SP_NONE

#define ACI_SP_EVEN_BYTE
#define ACI_SP_ODD_BYTE

#define ACI_SP_BYTE_O
#define ACI_SP_BYTE_1
#define ACI_SP_BYTE_2
#define ACI_SP_BYTE_3

Ok WNPEFO

** /| ACI Device Auto-Detect or 'Start’' button action
#define ACI_ AD_EXEC_FUNCTION
#define ACI_ AD_EXEC_AUTO
#define ACI_ AD_EXEC_SCRIPT

dialog

#define ACI_AD_DO_NOTHING

0 /I Execute the function currently selected in the list
1// Execute the Auto Programming command
2 I/ Execute the script chosen in the programmer Script File

3 /I Do nothing

See also: ACI_SetProgrammingParams, ACI_GetProgrammingParams

9.4.2.16 ACI_PStatus_Params

typedef struct tagACl_PStatus_Params

{
UINT Size;

UINT SiteNumber;

//
//

BOOL Executing; //
UINT PercentComplete; //
UINT DeviceStatus; //
BOOL NewDevice; //
BOOL FunctionFailed; //

CHAR FunctionName[128]; //
CHAR ErrorMessage[512]; //

} ACl_PStatus_Params;

(in)

Size of structure, in bytes

(in) For the Gang mode: site number to get status of, otherwise |

(out)
(out)
(out)
(out)
(out)
(out)
(out)

The function started by ACI_StartFunction() is executing
Percentage of the function completion, valid id Executing !
Device/socket status, see the ACI_DS XXX constants

New device inserted, no function has been executed yet. Val
TRUE if last function failed

Name of a function being executed if Executing !'= FALSE. I
Error message string if FunctionFailed != FALSE

If the ChipProg-02 was launched in the Gang mode (with the command line key /
gang) and controls either the gang programmer or a cluster of single programming
Si t eNunber machines, then before starting the ACI_GetStatus function the SiteNumber
parameter must contain the ordinal number of the programming site (socket) for
which the status is required. The site numbers begin from #0.

Execut i ng This parameter is TRUE while the CPI2-B1 operation, launched by the

© 2017 Phyton, Inc. Microsystems and Development Tools

374

CPI2-B1 In-System Device Programmer

ACI_StartFunction, is in progress.

Per cent Conpl
ete

While the Executing == TRUE this parameter represents a percentage of the
function completion - from 0 to 100.

Devi ceSt at us
(Irrelevant for

This structure member defines insertion of the device into the programmer ZIF
socket if the device insertion auto detection function is enabled. See the description
of the ACI_DS_XXX* constants in the aciprog.h file. See the matrix below:

Status Description

ACI_DS_OK The device is in the socket and the device's leads are reliably gripped

by the programmer's ZIF socket's sprung contacts.

ACI_DS_OUT_OF SOCKE
T

There is no device in the programmer's ZIF socket.

AC| DS_SHIFTED The device's leads are reliably inserted into the socket but the device
is incorrectly positioned in the socket (shifted or inserted upside

dow n). The same status may indicate that the device type selected in

CPI2-B1) the Select Device does not correspond to the type of chip in the
programmer's socket.

ACI_DS_BAD_CONTACT | The device's leads are not reliably gripped by the socket's sprung
contacts. In most cases this is an intermediate situation w hile an
operator is inserting the chip to the socket or is removing it.

ACI_DS_UNKNOWN It is impossible to detect the status because the device insertion auto
detection feature is disabled or this feature is not supported by this
programmer at all.

This structure member is a flag that acknowledges replacing a programmed device

in the programmer's socket by a new, presumably a blank device. It works only
NewDevi ce when the device insertion auto detection function is enabled. The NewDevice ==
(Irrelevant for FALSE while the already programmed chip is still in the socket and has not been
CPI2-B1)

replaced by a new one. After removing the programmed device from the socket the
New Device toggles to TRUE.

Functi onFai |
ed

This is an indicator of the function execution's result. It is set to FALSE when the

ACI_StartFunction launches a programming operation and remains FALSE while

the operation is in progress. If the programming operation fails and the parameter
Executing becomes FALSE the FunctionFailed flag toggles to TRUE.

Functi onNane

This is either the name of the programming operation (function) being currently
executed or the name of the failed function, if the FunctionFalied == TRUE.

Error Message

The destination of the error message if the function fails, i.e. the FunctionFalied
== TRUE.

This is the bit definition from the aciprog.h header file:

*// ACI Device Status

© 2017 Phyton, Inc. Microsystems and Development Tools

Reference 375

#define ACI_DS_OK 0 /I Device detected, pin contacts are ok

#define ACI_DS_OUT_OF_SOCKET 1 // No device in the socket

#define ACI_DS_SHIFTED 2 // Wrong device insertion is detected (shifted or inserted
upside down)

#define ACI_DS_BAD_CONTACT 3 /I Bad pin contact(s)

#define ACI_DS_UNKNOWN 4 /I Unknown (Auto Detect is probably off)

See also: ACI_ExecFunction, ACI_StartFunction, ACl_GetStatus

© 2017 Phyton, Inc. Microsystems and Development Tools

376 CPI2-B1 In-System Device Programmer

ACl header 146
I n d eX ACI structures 146
DLL 146
External application 146
External control 146
Programming automation 146
Application Control Interface exaples 152

ff_attrib 242
ff:atne 242 AppIlName[] 338
_ff_name 242 Arrays 204
T ASCIl Hex 87
ff size 242 .
- asin 246
_ff time 243 atan 246
fmode 338
- ATE control 23
_fullpath 243 atof 246
GetWord 243 .
~ rintf 243 atol - 246
P Auto Programming 91
Automatic Word Completion 169
- A - AutoWatches
pane 162

About AutoWatches pane 162

software version 74
abs 244
ACl 118, 122 - B -

DLL 146

BackSpace 247
Backspace unindents 67
Basic Data Types 186
Basic Types 204
Binary image 87
Blank 220

Blank Check 220
Block Operations 167

External application 146
External control 146
ACl examples 152

ACI functions

ACI structures 148
ACI structures

ACl functions 151

aco§ 244 BlockBegin 247
ActivateWindow 244
BlockColl 338
Add Watch BlockCol2 338
dialog 164

BlockCopy 247
BlockDelete 247
BlockEnd 247
BlockFastCopy 248
BlockLinel 338
BlockLine2 339
BlockMowe 248

AddButton 244
AddrExpr 245
AddWatch 245
Algorithm Parameters 77
AllProgOptionsDefault 215

Alphabetical List of Script Language Built-in Functions
and Variables 234

Alternate Forms for printf Conversion 300 BlockOff 248
Angstrem SAV 87 BlockPaste 248
APl 245 Blocks 67, 167

Application Control Interface gopymg / moving 167
ACl 146 line blocks 167

ACI functions 146 non-persistent blocks 167
persistent 67

© 2017 Phyton, Inc. Microsystems and Development Tools

Index

Blocks 67, 167
persistent blocks 167
standard blocks 167
vertical 67
vertical blocks 167

BlockStatus 339

Buffer 18, 220

Buffer access functions 209

Buffer Configuration
dialog 53

Buffer Dump
window 79

Buffers 52
dialog 52
memory allocation 52

_C -

Calculator

dialog 71
CallLibraryFunction 248
CaseSensitive 339
ceil 248
Character constants 185
Character operation functions 224
chdir 249
Check 220
Check Blank 115
Check Sum 220
CheckSum 58, 209, 220, 249
ChipProg

main menu 42
ChipProg-ISP

software characteristics 21
ChipProg-ISP2 19

chsize 249
ClearAllBreaks 250
ClearBreak 250
ClearBreaksRange 250
clearerr 250

ClearWindow 251

CLI 18

close 251

CloseWindow 251

Colors 64

tab 64

Command line 18, 118, 119
Command Line Interface 18

Command Line Keys 103, 104
Command Line Mode 18
Command Line Options 104
Command Line Parameters 104
Commands

menu 70
Commands Menu 70
Comments 183
Composite operator 197
Condensed Mode 168
Condensed Mode Setup

dialog 174
Conditional Compilation 207
Conditional Operator If-Else 199
Configurating Editor

dialog 67
Configuration 50
buffer 53

editor Options 50
environment 50
Configuration Files 44
Configuration Menu 50
Configure the device to be programmed
Configuring a Buffer

dialog 81

Confirm Replace
dialog 172
Console

window 89

Window Console 89
cos 251
CPI2-B1 19

hardware characteristics 20
CPI2-B1 major features

brief characteristics 19
Cr 252
creat 252
creatnew 252
creattemp 253
CurChar 254

CurCol 339
Curcuit 254
CurLine 339

Custom signature 222

Cycle Operator Do-While 201
Cycle Operator For 201
Cycle Operator While 200

377

116

© 2017 Phyton, Inc. Microsystems and Development Tools

378 CPI2-B1 In-System Device Programmer

D - _E -

Data byte order 186 Edit Information to be programmed 116
data caching 127 Edit Key Command
Debug shell control functions 229 dialog 69
Declaration: 263 Editor Key Mapping
Define Font 64 tab 69
Define key 65 Editor window 166
Definitions Ellipse 257
adapter 17 Environment
buffer 17 dialog 63
memory buffer 17 eof 257
sub-level 17 Eol 258
delay 254 Erase 115
DelChar 254 errno 340
DelLine 255 Ethernet settings B1 105
Description 263 Even byte 92
Description of Script Language 181 Event Wait Functions 232
Descriptions 203 Examples of ACluse 152
DesktopName[] 340 Examples of Expressions 181
Device and Algorithm Parameters exec 258
window 77 ExecFunction 215
Device Information ExecMenu 258
window 76 ExecScript 259
Device Parameters 77 exit 259
Device programming control functions 214 ExitProgram 260
Device serialization 57 exp 260
Difference Between the Script Language and the C Expr 260
Language 181 Expressions 178
difftime 255 External Object Description 206
Directives of the Script Language Preprocessor 206
Discard device 57 F
Discard serial numbers 57 - -

Display from address

dialog 84 fabs 260
Display from Line Number fclose 260
dialog 174 fdopen 261
Display Watches Options :ztr)rfor 26222
dialog 163

DisplayText 255 flush 262
DisplayTextF 256 fgetc 262
DLL 118, 122 fgets 263
Down 256 F!Ie format 87
dup 256 File Men.u
dup2 256 _Over\/lew 43
DUT 22 FileChanged 263

DUT connection 22 filelength 263

© 2017 Phyton, Inc. Microsystems and Development Tools

Index

filelength returns the length (in bytes) of the file
associated with handle. 263

fileno 263

FillRect 264

findfirst 264

findnext 264

FindWindow 265

FirstWord 265

FloatExpr 265

Floating-point constants 185

floor 265
fmod 266
fnmerge 241
fnsplit 266
Fonts 64
tab 64
fopen 266
Format 183

Format and nesting 197
Formatted input-output functions 227
ForwardTill 267

ForwardTillNot 267

fprintf 267

foutc 268

fouts 268

FrameRect 268

fread 269

FreeLibrary 269

freopen 269

frexp 270

fscanf 270

fseek 271

ftell 271

Functions for file and directory operation 225
fwrite 272

-G -

GangExecute 216

GangGetError 216

GangStatus 216

GangWaitComplete 216

General Editor

settings 67

General syntax of the script file language 183
GetBadDeviceCount 217

GetByte 210, 272

getc 272

getcurdir 273

getcwd 273

getdate 273

getdfree 274

getdisk() 274

GetDword 210, 278
getenv 274
GetFileName 274
getftime 275
GetGoodDeviceCount 217
GetLine 275

GetMark 275
GetMemory 210, 276
GetProgOptionBits 217
GetProgOptionFloat 217
GetProgOptionList 217
GetProgOptionLong 218
GetProgOptionString 218
Gets file size in bytes. 263
GetScriptFileName 276
gettime 276

getw 277
GetWindowHeight 277
GetWindowWidth 277
GetWord 211

Global Variable Definition 205
GotoXy 278

Graphical output functions 231
GUI 40

“H-

Help
menu 73
On-line 27
Highlight

multi-line Comments 67
Highlight Active Tabs 66
Highlighting

Syntax 67, 169
History file 44
Holtek OTR 87
Hot Keys 65
How to Get On-line Help 27
How to start a script file 157
How to write a script file 164
HStep 278

379

© 2017 Phyton, Inc. Microsystems and Development Tools

380

CPI2-B1 In-System Device Programmer

I/O Stream

window 160
I/O Stream window operation functions
IcCP 17
Identifier Change (#define)
Identifiers 183
Inclusion of Files (#include)
inport 279
inportb 279
InsertMode
Inspect 279
Install ChipProg 30
Install the ChipProg Software 30
Integer constants 184
Introduction 17
InvertRect 279
isalnum 280
isalpha 280
isascii 280
isatty 280
iscntrl 281
isdigit 281
isgraph 281
islower 281
ISP

ISP HV Mode 17

ISP Mode 17
isprint 282
ispunct 282
isspace 282
isupper 282
isxdigit 283
itoa 283

_] -

JEDEC 87

L -

LabVIEW
LastChar 283
LastEvent 283
LastEventint{1...4}

232

207

207

340

118, 119, 122

284

LastFoundString 340
LastMemAccAddr 340
LastMemAccAddrSpace
LastMemAccLen 341
LastMemAccType 341
LastMessageint 341
LastMessageLong 341
LastString 284

Left 285

LineTo 284

Load file

dialog 86

Load session 44
Load the file into the buffer
LoadDesktop 285
LoadLibrary 285
LoadOptions 285
LoadProgram 211, 285
LoadProject 286
Local Variable Definition
lock 337

locking 286

log 287

Log file 60

logl0 287

long filelength(long handle);
Long integer constants 184
Iseek 287

ltoa 288

-M -

Main menu

commands 42
Main menu bar 42
MainWindowHandle
Mapping

hot keys 65
Mathematical functions
MaxAddr 211, 288
memccpy 288
memchr 288
memcmp 289
memcpy 289
memicmp 289
memmove 290
Memory Dump Window Setup

dialog 82

341

116

204

263

341

222

© 2017 Phyton, Inc. Microsystems and Development Tools

Index

Memory Blocks
operations 84
memset 290

Menu
Project 44
View 44
Menu File 43
load file 43

sawe file 43
Menu Help 73
Menu Script 72
Message box

always display 66
MessageBox 290
MessageBoxEx 291
Messages

tab 66
MinAddr 212, 291
Miscellaneous Settings 66
mkdir 291
Modify Address

dialog 84
Modify Memory

dialog 84
Motorola S-record 87
MoweTo 292
MovweWindow 292
movmem 292
mprintf 218
Multi-File Search Results

dialog 172
Multi-programming mode 118

NumWindows 342

_ 0O -

Odd byte 92
On success

EBADF Bad file number

On-line Help 27
On-the-Fly

On-the-Fly Command Line Options

On-the-Fly Options 109
On-the-Fly Control

Example 114

On-the-Fly Control utility 108

On-the-Fly utility return codes
return codes 113
open 293
Open Project 46
dialog 46
OpenEditorWindow 293
OpenProject 218
OpenStreamWindow 294
OpenUserWindow 294
OpenWindow 294
Operands 180
Operations and Expressions
About 187

Arithmetic Conwersions in Expressions
Arithmetic Operations 188

Array Operations 192

Assignment Operations 189

Bit Operations 192

Logical Operations 191
Operand Execution Order
Operand Metadesignation

Operation Execution Priorities and Order

Other Operations 194
Operations with Expressions
Operations with Memory Blocks
Operator Break 198
Operator Continue 198
Operator Goto 199
Operator label 197
Operator Return 199
Operator-expression 197
Operators 196
Options

dialog 61
Optionsé&split

dialog 92
Other Various Functions 233
outport 295
outportb 295
Owvenview

User Interface 40

_P-

Packages/Adapters 50
peek 295

195
187

179
84

381

196

194

© 2017 Phyton, Inc. Microsystems and Development Tools

382

CPI2-B1 In-System Device Programmer

peekb 295
POF 87
poke 296
pokeb 296
Polyline 296
pow 296
powl0 297

Predefined Symbols in the Script File Compilation
208
Preferances 61

PRG 87

printf 297

printf Conversion Type Characters 298
ProgOptionDefault 218
Program a Device 116
Program Manager 90
Auto Programming 90
dialog 90

Operation Progress 90
window 89
Programmer 17

work with 115
Programming

check blank 115
configure the device 116
edit Information 116
erase 115

load the file 116
program a Device 116
read a device 115
sawe the data 117
verify 117

write Information into the Device 116

Programming automation 146
Project 39

Project Menu 44
Project Options 39, 45
dialog 45
Project Repository

dialog 49
Projects 39

pscanf 303

putc 304

putenv 305

putw 305

Quick Start 27

Quick Watch
enabled 66

Quick Watch Function

"R -

305
305
305

170

rand
random
randomize
read 306
Read a Device
ReadShadowArea
Rectangle 306
RedrawScreen 306
Regular Expressions
search for 173
RegularExpressions 342
Relation Operations 191
ReloadProgram 212, 307
Remote control 103
RemoweButtons 307
rename 307
Replace Text
dialog 171
Repository 49
Returned Value
rewind 307
Right 308
rmdir 308
Run ChipProg 30

_S -

Sawe file from buffer

dialog 88
Sawe session 44
Sawe the data read out from a device
SaweData 212, 308
SaveDesktop 309
SaweFile 309
SaveOptions
scanf 309
Script 156, 158, 181

115
218

263

117

309

© 2017 Phyton, Inc. Microsystems and Development Tools

Index

Script 156, 158, 181

menu 72
Script file manipulation functions 227
Script Files 156, 181

dialog 158
Script Language Built-in Functions 208
Script Language Built-in Variables 233
Script source window

open 158
SDcard 127
Search 310

Search for Regular Expressions 173
Search for Text
dialog 170
Search mask 50
searchpath 311
SearchReplace 311
Select color 64
Select device 50
dialog 50
SelectBrush 311
SelectedString[] 342
SelectFont 311
SelectPen 312
Serial number 57
Serialization 57
Serialization, Checksum, Log file

dialog 55
Set/Retrieve Bookmark
dialog 173

SetBkColor 312
SetBkMode 312
SetBreak 313
SetBreaksRange 313
SetByte 213, 313
SetCaption 313
SetDevice 213
setdisk 313
SetDword 213, 314
SetFileName 314
setftime 314
SetMark 315
setmem 315
SetMemory 214, 315
setmode 315
SetPixel 316
SetProgOption 219
SetTextColor 316

SetToolbar 316
SetUpdateMode 316
SetWindowFont 317
SetWindowSize 317
SetWindowSizeT 318
SetWord 214, 318
Signature 222
Signature String 59
Simple example of a script file 156
sin 318

Sounds 61

Split data 92

sprintf 318

sqrt 319

srand 319

sscanf 319

Standalone 125
Stand-Alone 125
Standalone Mode 125
Standalone Operation 125
Standard/Extended Intel HEX 87
Start Address 220

Statistics
dialog 94
Step 320
Stop 320
stpcpy 320
strcat 320
strchr 321
strcmp 321
strcmpi 321
strcpy 321

strcspn 322

Stream file functions 226
stricmp 322

String operation functions 223
strlen 322

strlwr 322

strncat 323

strncmp 323

strncmpi 323

strncpy 324

strnicmp 324

strnset 324

strpbrk 324

strrchr 325

strrev 325

strset 325

383

© 2017 Phyton, Inc. Microsystems and Development Tools

384 CPI2-B1 In-System Device Programmer

strspn 325

strstr 326

strol 326 -V -

strioul 327 Verify programming 117

strupr 327 View 44

Sub-layer 53 View Menu 44
additional 53

main 53

Sub-Layer 'Code’ 53 - W -

Sub-layer 'ID location' 53

Syntax Highlighting 169 Wait 331

System Requirements 30 WaitExprChange 331

SystemDir[] 342 WaitExprTrue 332

WaitGetMessage 332

T WaitMemoryAccess 332

- - WaitSendMessage 333
) WaitStop 334

Tab Size 67 WaitWindowEwvent 334

tan 327 Watches

tanh 327 window 162

target device 22 Watches Window

tell 328

add Watch 164

display Watches Options 163
WE_* constants 283
wgetchar 335

wgethex 335

wgetstring 336

WholeWords 342

TerminateAllScripts 328
TerminateScript 328
Terminology 17
Terminology and Definitions 17
Text 328

Text Edit 166

Text editor functions 228

: Window
toascii 329 menu 73
Tof 329 Menu Window 73
tolower 329 Window Device Information 76
Toolbar Window Dump Setup
tab 66

dialog 82
Window Editor 166
Window I/O Stream 160

toupper 329

- U - Window Program Manager 89
Window User 160
ultoa 329 Window Watches 162
Undo Count 67 WindowHandles[] 343
unlink 330 WindowHotkey 336
unlock 330 Windows 76
Up 330 Windows operation functions and other system
UpdateWindow 331 functions 230
User Word Completion 169
window 160 WordLeft 336
User Interface 40 WordRight 336
oveniew 40 Work with Programmer 115

© 2017 Phyton, Inc. Microsystems and Development Tools

Index

WorkFieldHeight 343
WorkFieldWidth 343

wprintf 336

write 337

Write Information into the Device 116
WriteShadowArea 219

385

© 2017 Phyton, Inc. Microsystems and Development Tools

Back Cover

	Introduction
	Terminology
	CPI2-B1 device programmer
	Features Overview
	Hardware characteristics
	Software features
	Connector TARGET
	Connector CONTROL
	Single- and Gang-programming control modes

	Installation and Launching
	Getting Assistance
	Hardware installation
	System Requirements
	Software Installation
	Startup Dialog
	Launching device programmers

	Control Interfaces
	Using Projects
	Graphical User Interface
	User Interface Overview
	Toolbars
	Menus
	The File Menu
	Configuration Files

	The View Menu
	The Project Menu
	The Project Options Dialog
	The Open Project Dialog
	Export and Import Project Dialogs
	Project Repository

	The Configure Menu
	The Select Device dialog
	The Buffers dialog
	The Buffer Configuration dialog

	The Serialization, Checksum, and Log Dialog
	Shadow Areas
	General settings
	Device Serialization
	Checksum
	Signature string
	Custom Shadow Areas
	Log file

	The Preferences Dialog
	The Environment Dialog
	Fonts
	Colors
	Mapping Hot Keys
	Toolbar
	Messages
	Miscellaneous Settings

	The Editor Otions Dialog
	The General Tab
	The Key Mappings Tab
	The Edit Key Command Dialog

	The Commands Menu
	Calculator

	The Script Menu
	The Window Menu
	The Help Menu
	License Management Dialog

	Windows
	The Device Information Window
	The Device and Algorithm Parameters Window
	The Buffer Dump Window
	The 'Configuring a Buffer' dialog
	The 'Buffer Setup' dialog
	The 'Display from address' dialog
	The 'Modify Data' dialog
	The 'Memory Blocks' dialog
	The 'Load File' dialog
	File Formats

	The 'Save File' dialog

	The Console Window
	The Program Manager Window
	The Program Manager tab
	Auto Programming

	The Options tab
	Split data

	The Statistics tab

	The Memory Card Window
	Windows for Scripts

	Simplified User Interface
	Settings of Simplified User Interface
	Operations with Simplified User Interface

	Command Line Interface
	Command Line Options

	On-the-Fly Control Interface
	On-the-Fly Command Line Options
	On-the-Fly utility return codes
	On-the-Fly Control Examples

	Operating Procedures
	How to check if device is blank
	How to erase a device
	How to read data from device
	How to program a device
	How to load a file into a buffer
	How to edit data before programming
	How to configure target device
	How to write information into the device

	How to verify programming
	How to save data to disk
	Multi-Target Programming

	Integration with NI LabVIEW
	LabVIEW Integration Using Command Line
	LabVIEW Integration Using ACI

	Standalone Operation Mode
	Overview
	Switching to and from Standalone Mode
	Preparing Standalone Mode Projects
	Data Caching
	Projects and Jobs
	Device serialization
	Permissions and setting limits

	Standalone Mode Monitor
	Example of Setting Up Standalone Mode

	Software Development Kit (SDK)
	ACI Components
	Using ACI
	Controlling Multiple Programmers via ACI
	ACI Functions
	ACI Structures
	Examples
	API Explorer

	Scripting
	Scripting Overview
	Simple example

	The Startup Script
	Running Scripts
	The Script Files Dialog
	The User Window
	The I/O Stream Window

	Debugging a Script
	The Script Window
	Menu and Toolbar
	The AutoWatches Pane

	The Watches Window
	The Display Watches Options Dialog
	The Add Watch Dialog

	Script Editor
	The File Menu
	The Edit Menu
	Block Operations
	Condensed Mode
	Syntax Highlighting
	Automatic Word Completion
	The Quick Watch Function
	Dialogs
	The Search for Text Dialog
	The Replace Text Dialog
	The Confirm Replace Dialog
	The Multi-File Search Results Dialog
	Search for Regular Expressions
	The Set/Retrieve Bookmark Dialogs
	The Condensed Mode Setup Dialog
	The Display from Line Number Dialog

	Reference
	Error Messages
	Error Load/ Save File
	Error Addresses
	Error sizes
	Error command-line option
	Error Programming option
	Error DLL
	Error USB
	Error programmer hardware
	Error internal
	Error confiquration
	Error device
	Error check box
	Error mix
	Warning

	Expressions
	Operations
	Operands
	Expression Examples

	Scripting Reference
	Scripting Language Description
	Difference Between Scripting and C Languages
	Scripting Language Syntax
	Format
	Comments
	Identifiers
	Reserved words
	Integer constants
	Long integer constants
	Floating-point constants
	Character constants
	String constants

	Basic Data Types
	Data byte order
	Operations and Expressions
	Operand Metadesignation
	Arithmetic Operations
	Assignment Operations
	Relation Operations
	Logical Operations
	Array Operations
	Bit Operations
	Other Operations
	Operation Execution Priorities and Order
	Operand Execution Order
	Arithmetic Conversions in Expressions

	Operators
	Format and nesting
	Operator label
	Composite operator
	Operator-expression
	Operator Break
	Operator Continue
	Operator Return
	Operator Goto
	Conditional Operator If-Else
	Cycle Operator While
	Cycle Operator Do-While
	Cycle Operator For

	Functions
	Function Definition
	Function Call
	The main Function

	Descriptions
	Basic Types
	Arrays
	Local Variable Definition
	Global Variable Definition
	Variable Initialization
	External Object Description

	Directives of the Script Language Preprocessor
	Identifier Change (#define)
	Inclusion of Files (#include)
	Conditional Compilation

	Predefined Symbols in the Script File Compilation

	Built-in Functions by Group
	Buffer access functions
	CheckSum
	GetByte
	GetDword
	GetMemory
	GetWord
	LoadProgram
	MaxAddr
	MinAddr
	ReloadProgram
	SaveData
	SetByte
	SetDevice
	SetDword
	SetMemory
	SetWord

	Device programming control functions and variables
	Function AllProgOptionsDefault
	Function ExecFunction
	Function GangExecute
	Function GangGetError
	Function GangStatus
	Function GangWaitComplete
	Function GetBadDeviceCount
	Function GetGoodDeviceCount
	Function GetProgOptionBits
	Function GetProgOptionFloat
	Function GetProgOptionList
	Function GetProgOptionLong
	Function GetProgOptionString
	Function mprintf
	Function OpenProject
	Function ProgOptionDefault
	Function ReadShadowArea
	Function SetProgOption
	Function WriteShadowArea
	Variable BlankCheck
	Variable BufferStartAddr
	Variable Checksum
	Variable ChipEndAddr
	Variable ChipStartAddr
	Variable DeviceBatchSize
	Variable DialogOnError
	Variable GangMode
	Variable InsertTest
	Variable LastErrorMessage[]
	Variable NumSites
	Variable ReverseBytesOrder
	Variable SerialNumber
	Variable Signature
	Variable VerifyAfterProgram
	Variable VerifyAfterRead

	Mathematical functions
	String operation functions
	Character operation functions
	Functions for file and directory operation
	Stream file functions
	Formatted input-output functions
	Script File Manipulation Functions
	Text editor functions
	Debug shell control functions
	Windows operation functions and other system functions
	Graphical output functions
	I/O Stream window operation functions
	Event Wait Functions
	Other Various Functions

	Built-in Variables by Group
	List of Built-in Functions and Variables
	Scripting Functions
	fnmerge
	Function _ff_attrib
	Function _ff_date
	Function _ff_name
	Function _ff_size
	Function _ff_time
	Function _fullpath
	Function _GetWord
	Function _printfv
	Function abs
	Function acos
	Function ActivateWindow
	Function AddButton
	Function AddrExpr
	Function AddWatch
	Function API
	Function asin
	Function atan
	Function atof
	Function atoi
	Function BackSpace
	Function BlockBegin
	Function BlockCopy
	Function BlockDelete
	Function BlockEnd
	Function BlockFastCopy
	Function BlockMove
	Function BlockOff
	Function BlockPaste
	Function CallLibraryFunction
	Function ceil
	Function chdir
	Function CheckSum
	Function chsize
	Function ClearAllBreaks
	Function ClearBreak
	Function ClearBreaksRange
	Function clearerr
	Function ClearWindow
	Function close
	Function CloseProject
	Function CloseWindow
	Function cos
	Function Cr
	Function creat
	Function creatnew
	Function creattemp
	Function CurChar
	Function Curcuit
	Function delay
	Function DelChar
	Function DelLine
	Function difftime
	Function DisplayText
	Function DisplayTextF
	Function Down
	Function dup
	Function dup2
	Function Ellipse
	Function eof
	Function Eof
	Function Eol
	Function exec
	Function ExecMenu
	Function ExecScript
	Function exit
	Function ExitProgram
	Function exp
	Function Expr
	Function fabs
	Function fclose
	Function fdopen
	Function feof
	Function ferror
	Function fflush
	Function fgetc
	Function fgets
	Function FileChanged
	Function filelength
	Function fileno
	Function FillRect
	Function findfirst
	Function findnext
	Function FindWindow
	Function FirstWord
	Function FloatExpr
	Function floor
	Function fmod
	Function fnsplit
	Function fopen
	Function ForwardTill
	Function ForwardTillNot
	Function fprintf
	Function fputc
	Function fputs
	Function FrameRect
	Function fread
	Function FreeLibrary
	Function freopen
	Function frexp
	Function fscanf
	Function fseek
	Function ftell
	Function fwrite
	Function GetByte
	Function getc
	Function getcurdir
	Function getcwd
	Function getdate
	Function getdfree
	Function getdisk()
	Function getenv
	Function GetFileName
	Function getftime
	Function GetLine
	Function GetMark
	Function GetMemory
	Function GetScriptFileName
	Function gettime
	Function getw
	Function GetWindowHeight
	Function GetWindowWidth
	Function GetWord
	Function GetWord
	Function GotoXY
	Function HStep
	Function inport
	Function inportb
	Function Inspect
	Function InvertRect
	Function isalnum
	Function isalpha
	Function isascii
	Function isatty
	Function iscntrl
	Function isdigit
	Function isgraph
	Function islower
	Function isprint
	Function ispunct
	Function isspace
	Function isupper
	Function isxdigit
	Function itoa
	Function LastChar
	Function LastEvent
	Function LastEventInt{1...4}
	Function LastString
	Function LineTo
	Function LoadDesktop
	Function Left
	Function LoadLibrary
	Function LoadOptions
	Function LoadProgram
	Function LoadProject
	Function locking
	Function log
	Function log10
	Function lseek
	Function ltoa
	Function MaxAddr
	Function memccpy
	Function memchr
	Function memcmp
	Function memcpy
	Function memicmp
	Function memmove
	Function memset
	Function MessageBox
	Function MessageBoxEx
	Function MinAddr
	Function mkdir
	Function MoveTo
	Function MoveWindow
	Function movmem
	Function open
	Function OpenEditorWindow
	Function OpenStreamWindow
	Function OpenUserWindow
	Function OpenWindow
	Function outport
	Function outportb
	Function peek
	Function peekb
	Function poke
	Function pokeb
	Function Polyline
	Function pow
	Function pow10
	Function printf
	printf Conversion Type Characters
	printf Flag Characters
	printf Format Specifier Conventions
	%e or %E Conversions
	%f Conversions
	%g or %G Conversions
	%x or %X Conversions
	Alternate Forms for printf Conversion

	printf Format Specifiers
	printf Format String
	printf Input-size Modifiers
	printf Precision Specifiers
	printf Width Specifiers

	Function pscanf
	Function putc
	Function putenv
	Function putw
	Function rand
	Function random
	Function randomize
	Function read
	Function Rectangle
	Function RedrawScreen
	Function ReloadProgram
	Function RemoveButtons
	Function rename
	Function rewind
	Function Right
	Function rmdir
	Function SaveData
	Function SaveDesktop
	Function SaveFile
	Function SaveOptions
	Function scanf
	Function Search
	Function searchpath
	Function SearchReplace
	Function SelectBrush
	Function SelectFont
	Function SelectPen
	Function SetBkColor
	Function SetBkMode
	Function SetBreak
	Function SetBreaksRange
	Function SetByte
	Function SetCaption
	Function setdisk
	Function SetDword
	Function SetFileName
	Function setftime
	Function SetMark
	Function setmem
	Function SetMemory
	Function setmode
	Function SetPixel
	Function SetTextColor
	Function SetToolbar
	Function SetUpdateMode
	Function SetWindowFont
	Function SetWindowSize
	Function SetWindowSizeT
	Function SetWord
	Function sin
	Function sprintf
	Function sqrt
	Function srand
	Function sscanf
	Function Step
	Function Stop
	Function stpcpy
	Function strcat
	Function strchr
	Function strcmp
	Function strcmpi
	Function strcpy
	Function strcspn
	Function stricmp
	Function strlen
	Function strlwr
	Function strncat
	Function strncmp
	Function strncmpi
	Function strncpy
	Function strnicmp
	Function strnset
	Function strpbrk
	Function strrchr
	Function strrev
	Function strset
	Function strspn
	Function strstr
	Function strtol
	Function strtoul
	Function strupr
	Function tan
	Function tanh
	Function tell
	Function TerminateAllScripts
	Function TerminateScript
	Function Text
	Function toascii
	Function Tof
	Function tolower
	Function toupper
	Function ultoa
	Function unlink
	Function unlock
	Function Up
	Function UpdateWindow
	Function Wait
	Function WaitExprChange
	Function WaitExprTrue
	Function WaitGetMessage
	Function WaitMemoryAccess
	Function WaitSendMessage
	Function WaitStop
	Function WaitWindowEvent
	Function wgetchar
	Function wgethex
	Function wgetstring
	Function WindowHotkey
	Function WordLeft
	Function WordRight
	Function wprintf
	Function write
	lock
	Variable _fmode
	Variable ApplName
	Variable BlockCol1
	Variable BlockCol2
	Variable BlockLine1
	Variable BlockLine2
	Variable BlockStatus
	Variable CaseSensitive
	Variable CurCol
	Variable CurLine
	Variable DesktopName
	Variable errno
	Variable InsertMode
	Variable LastFoundString
	Variable LastMemAccAddr
	Variable LastMemAccAddrSpace
	Variable LastMemAccLen
	Variable LastMemAccType
	Variable LastMessageInt
	Variable LastMessageLong
	Variable MainWindowHandle
	Variable NumWindows
	Variable RegularExpressions
	Variable SelectedString
	Variable SystemDir
	Variable WholeWords
	Variable WindowHandles
	Variable WorkFieldHeight
	Variable WorkFieldWidth

	ACI Fuctions and Structures
	ACI Fuctions
	ACI_Launch
	ACI_Exit
	ACI_ErrorString
	ACI_LoadConfigFile
	ACI_SaveConfigFile
	ACI_LoadProject
	ACI_SetDevice
	ACI_GetDevice
	ACI_GetLayer
	ACI_CreateBuffer
	ACI_ReallocBuffer
	ACI_ReadLayer
	ACI_WriteLayer
	ACI_FillLayer
	ACI_GetProgrammingParams
	ACI_SetProgrammingParams
	ACI_GetProgOption
	ACI_SetProgOption
	ACI_AllProgOptionsDefault
	ACI_ExecFunction
	ACI_StartFunction
	ACI_GangStart
	ACI_GetStatus
	ACI_TerminateFunction
	ACI_GangTerminateFunction
	ACI_FileLoad
	ACI_FileSave
	ACI_SettingsDialog
	ACI_SelectDeviceDialog
	ACI_BuffersDialog
	ACI_LoadFileDialog
	ACI_SaveFileDialog
	ACI_SerializationDialog
	ACI_SetConnection
	ACI_GetConnection
	ACI_ConnectionStatus

	ACI Structures
	ACI_Launch_Params
	ACI_ErrorString_Params
	ACI_Buffer_Params
	ACI_Config_Params
	ACI_ProjectParams
	ACI_Connection_Params
	ACI_Device_Params
	ACI_File_Params
	ACI_Function_Params
	ACI_GangStart_Params
	ACI_GangTerminate_Params
	ACI_Layer_Params
	ACI_Memory_Params
	ACI_ProgOption_Params
	ACI_Programming_Params
	ACI_PStatus_Params

