

Product Overview

LV8702V: PWM Current Control High-Efficiency Stepper Motor Driver

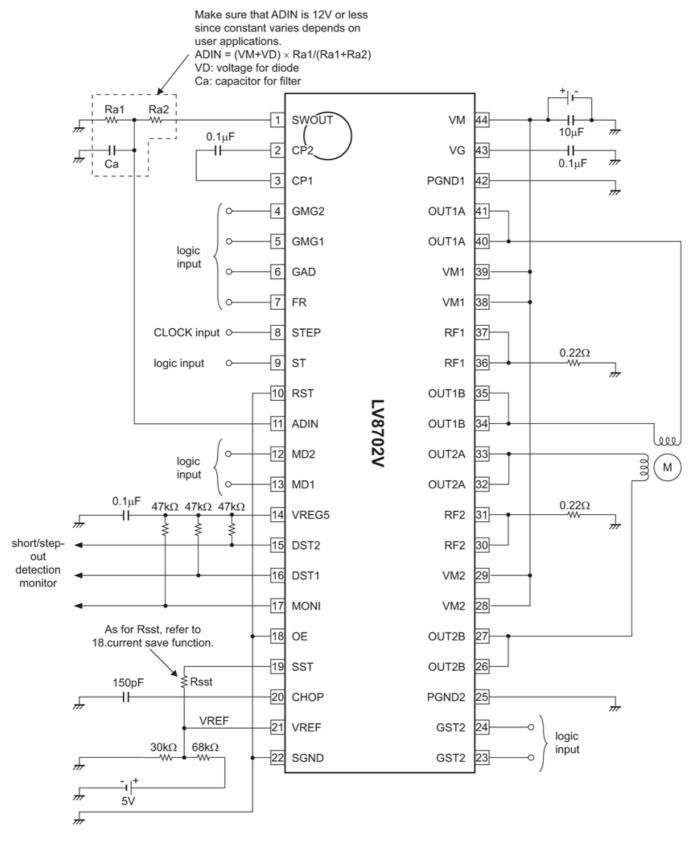
For complete documentation, see the data sheet

The LV8702V is a 2-channel Full-bridge driver IC that can drive a stepper motor driver, which is capable of micro-step drive and supports quarter step. Current is controlled according to motor load and rotational speed at half step, half step full-torque and quarter step excitation, thereby highly efficient drive is realized. Consequently, the reduction of power consumption, heat generation, vibration and noise is achieved.

Features

- Built-in 1ch PWM current control stepper motor driver (bipolar type)
- Ron (High-side Ron: 0.3, Low-side Ron: 0.25, total: 0.55, Ta = 25°C, IO = 2.5A)
- · Micro-step mode is configurable as follows: full step/half step full-torque/half step/quarter step
- · Excitation step moves forward only with step signal input
- · Built-in output short protection circuit (latch method)
- · Control power supply is unnecessary
- Built-in high-efficient drive function (supports half step full-torque/half step/quarter step excitation mode)
- · Built-in step-out detection function (Step-out detection may not be accurate during high speed rotation)
- IO max=2.5A
- Built-in thermal shut down circuit
 For more features, see the data sheet

Applications


- Stepper
- · Computing & Peripherals
- Industrial

End Products

- Printer
- Scanner
- Surveillance camera(CCTV)
- Textile machine

Part Electrical Specifications																
Product	Compliance	Status	V _M Min (V)	V _M Max (V)	V _{CC} Min (V)	V _{CC} Max (V)	l _o Max (A)	I _O Peak Max (A)	Step Reso lution	Contr ol Type	Feed back Meth od	Curre nt Sens e	Regu lator Outp ut	Fault Dete ction	R _{DS(o} Typ ()	Pack age Type
LV8702V-TLM-H	Pb-free Halide free	Active	9	32			2.5	3	1 1/4 1/2	Clock		Exter nal Resis tor		Ther mal	0.55	SSO P- 44J EP

Application Diagram

Calculation for each constant setting according to the above circuit diagram is as follows.

1) Constant current (100%) setting $VREF = 5V \times 30k\Omega/(68k\Omega + 30k\Omega) \approx 1.53V$ When VREF = 1.53V : $I_{OUT} = VREF/5/0.22\Omega \approx 1.39A$

2) Chopping frequency setting Fchop = Ichop/(Cchop \times Vtchop \times 2) = 10μ A/(150pF \times 0.5V \times 2) \approx 66.7kHz

For more information please contact your local sales support at www.onsemi.com

Created on: 4/29/2017