Product Overview ### LV8702V: PWM Current Control High-Efficiency Stepper Motor Driver For complete documentation, see the data sheet The LV8702V is a 2-channel Full-bridge driver IC that can drive a stepper motor driver, which is capable of micro-step drive and supports quarter step. Current is controlled according to motor load and rotational speed at half step, half step full-torque and quarter step excitation, thereby highly efficient drive is realized. Consequently, the reduction of power consumption, heat generation, vibration and noise is achieved. #### **Features** - Built-in 1ch PWM current control stepper motor driver (bipolar type) - Ron (High-side Ron: 0.3, Low-side Ron: 0.25, total: 0.55, Ta = 25°C, IO = 2.5A) - · Micro-step mode is configurable as follows: full step/half step full-torque/half step/quarter step - · Excitation step moves forward only with step signal input - · Built-in output short protection circuit (latch method) - · Control power supply is unnecessary - Built-in high-efficient drive function (supports half step full-torque/half step/quarter step excitation mode) - · Built-in step-out detection function (Step-out detection may not be accurate during high speed rotation) - IO max=2.5A - Built-in thermal shut down circuit For more features, see the data sheet ## **Applications** - Stepper - · Computing & Peripherals - Industrial #### **End Products** - Printer - Scanner - Surveillance camera(CCTV) - Textile machine | Part Electrical Specifications | | | | | | | | | | | | | | | | | |--------------------------------|------------------------|--------|------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|--------------------------------------|------------------------|---------------------|----------------------------|------------------------------|-----------------------------|------------------------|--------------------------|------------------------| | Product | Compliance | Status | V _M
Min
(V) | V _M
Max
(V) | V _{CC}
Min
(V) | V _{CC}
Max
(V) | l _o
Max
(A) | I _O
Peak
Max
(A) | Step
Reso
lution | Contr
ol
Type | Feed
back
Meth
od | Curre
nt
Sens
e | Regu
lator
Outp
ut | Fault
Dete
ction | R _{DS(o} Typ () | Pack
age
Type | | LV8702V-TLM-H | Pb-free
Halide free | Active | 9 | 32 | | | 2.5 | 3 | 1
1/4
1/2 | Clock | | Exter
nal
Resis
tor | | Ther
mal | 0.55 | SSO
P-
44J
EP | #### **Application Diagram** Calculation for each constant setting according to the above circuit diagram is as follows. 1) Constant current (100%) setting $VREF = 5V \times 30k\Omega/(68k\Omega + 30k\Omega) \approx 1.53V$ When VREF = 1.53V : $I_{OUT} = VREF/5/0.22\Omega \approx 1.39A$ 2) Chopping frequency setting Fchop = Ichop/(Cchop \times Vtchop \times 2) = 10μ A/(150pF \times 0.5V \times 2) \approx 66.7kHz For more information please contact your local sales support at www.onsemi.com Created on: 4/29/2017