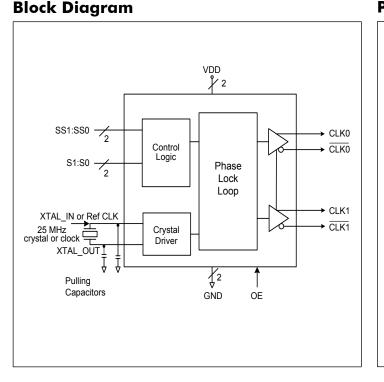
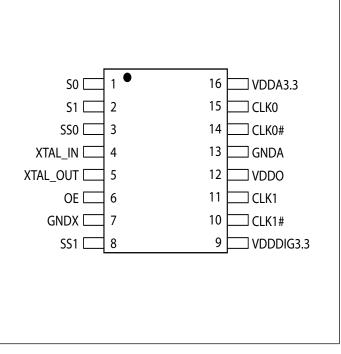


Low Power PCIe 3.0 Clock Generator with 2 HCSL Outputs


Features

- → PCIe[®] 3.0, 2.0 and 1.0 compliant
- → LVDS compatible outputs
- → Supply voltage of 3.3V ±10%
- → 25MHz crystal or clock input frequency
- → Low power consumption with independent output power supply 1.05V to 3.3V
- → Jitter 35ps cycle-to-cycle (typ)
- \rightarrow Spread of -0.5%, -0.75%, and no spread
- → Industrial temperature range
- → Spread Bypass option available
- → Spread and frequency selection via external pins
- → Packaging: (Pb-free and Green)
 - 16-pin TSSOP (L16)


Description

The PI6CFGL202B is a spread spectrum clock generator compliant to PCI Express® 3.0 and Ethernet requirements. The device is used for PC or embedded systems to substantially reduce Electromagnetic Interference (EMI).

The PI6CFGL202B provides two differential (HCSL) or LVDS spread spectrum outputs. The PI6CFGL202B is configured to select spread and clock selection. Using Pericom's patented Phase-Locked Loop (PLL) techniques, the device takes a 25MHz crystal input and produces two pairs of differential outputs (HCSL) at 25MHz, 100MHz, 125MHz and 200MHz clock frequencies. It also provides spread selection of -0.5%, -0.75%, and no spread.

Pin Configuration (16-Pin TSSOP)

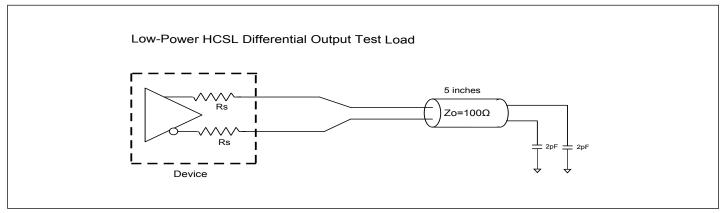
Pin Description

Pin #	Pin Name	Туре	Description
1	S0	Input	Select pin 0 (Internal pull-up resistor). See Table 1.
2	S1	Input	Select pin 1 (Internal pull-up resistor). See Table 1.
3	SS0	Input	Spread Select pin 0 (Internal pull-up resistor). See Table 2.
4	XTAL_IN	Input	Crystal or clock input. Connect to a 25MHz crystal or single ended clock.
5	XTAL_OUT	Output	Crystal connection. Leave unconnected for clock input.
6	OE	Input	Output enable. Internal pull-up resistor.
7	GNDX	Power	Crystal ground pin.
8	SS1	Input	Spread Select pin 1 (Internal pull-up resistor). See Table 2.
9	VDDDIG3.3	Power	3.3V digital power.
10	CLK1#	Output	HCSL compliment clock output, LOW when output is disabled.
11	CLK1	Output	HCSL clock output, LOW when output is disabled.
12	VDDO	Power	Power supply, nominal 1.8V, range1.05V~3.3V.
13	GNDA	Power	Output and analog circuit ground.
14	CLK0#	Output	HCSL compliment clock output, LOW when output is disabled.
15	CLK0	Output	HCSL clock output, LOW when output is disabled.
16	VDDA3.3	Power	3.3V power supply for PLL core.

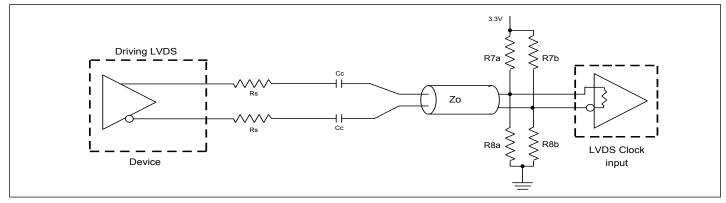
Table 1: Frequency Select Table

S1	S0	CLK(MHz)
0	0	25
0	1	100
1	0	125
1	1	200

Table 2: Spread Selection Table


SS1	SS0	Spread					
0	0	No Spread					
0	1	Down -0.5					
1	0	Down -0.75					
1	1	No Spread					

2



Test Loads

Driving LVDS

Driving LVDS inputs with the PI6CFGL202B

	Va	alue					
Component	Receiver has termination	ion Receiver does not have termination					
R7a, R7b	10Κ Ω	140 Ω					
R8a, R8b	5.6Κ Ω	75 Ω					
Cc	0.1 uF	0.1 uF					
Vcm	1.2 volts	1.2 volts					

16-0010

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Supply Voltage to Ground Potential	4.6V
All Inputs and Output	0.5V toVDD+0.5V
Ambient Operating Temperature	-40 to +85°C
Storage Temperature	65°C to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C
ESD Protection (Input)	2000V(HBM)
1	

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics-Current Consumption

 $(T_A = -40 \sim 85^{\circ}C; VDD = 3.3V + /-10\%; VDDO = 1.8V + /-10\%$, See Test Loads for Loading Conditions)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
I _{ddop}	Operating supply current ¹	Total power consumption, All outputs active @100MHz			52	mA

Notes:

1. Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating

Conditions ($T_{A} = -40 \sim 85^{\circ}C$; VDD = 3.3V + /-10%; VDDO = 1.8V + /-10%, See Test Loads for Loading Conditions)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
V _{DDX}	Supply Voltage ¹	Supply voltage for core, analog	3.0	3.3	3.6	V
V _{DDO}	Supply Voltage ¹	Supply voltage outputs	1.65	1.8	2.0	V
V _{IH}	Input High Voltage ¹	OE, S0, S1, SS0, SS1	0.65 V _{DD}		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage ¹	OE, S0, S1, SS0, SS1	-0.3		0.35 V _{DD}	V
I		Single-ended inputs, V _{IN} = GND, V _{IN} = VDD (exclude XTAL pin)	-5		5	uA
I	Input Current ¹	Single-ended inputs $V_{IN} = 0$ V; Inputs with internal pull-up resistors $V_{IN} = VDD$; Inputs with internal pull-down resistors	-200		200	uA
Fin	Input Frequency ¹	XTAL or X1 input	23	25	26	MHz
Lpin	Pin Inductance ¹				7	nH
C _{IN}		Logic Inputs, except DIF_IN	1.5		5	pF
C _{INDIF_IN}	Capacitance ^{1,4}	DIF_IN differential clock inputs	1.5		2.7	pF
C _{OUT}		Output pin capacitance			6	pF
T _{stab}	Clk Stabilization ^{1,2}	From V_{DD} Power-Up and after input clock stabilization		0.6	1	ms

4

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
£	Input SS Modulation	Allowable Frequency	30	31.500	33	kHz
I _{MODIN}	Frequency ¹	(Triangular Modulation)	30	51.500	33	кпz
T _{OE}	Output Enable Time ¹	All output			10	μs
t _{or}	Output Disable Time ¹	All output			10	μs
t _{STABLE}	From Power-up to V_{DD} =3.3V ¹	From Power-up V _{DD} =3.3V		3.0		ms
t _{spread}	Setting period after spread change ¹	Setting period after spread change		3.0		ms

Note:

1. Guaranteed by design and characterization, not 100% tested in production.

2. Control input must be monotonic from 20% to 80% of input swing. Input Frequency Capacitance

3. Time from deassertion until outputs are >200 mV

4. DIF IN input

Electrical Characteristics–CLK 0.7V Low Power HCSL Outputs ($T_A = -40 \sim 85^{\circ}C$; VDD = 3.3V + -200

10%; VDDO = $1.8V + / -10%$, See	Test Loads for	Loading Conditions)
-----------------------------------	----------------	---------------------

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
Trf	Slew rate ^{1,2,3}		1.1	2	4.5	V/ns
V _{HIGH}	Voltage High ¹	Statistical measurement on single-ended signal	660		950	mV
V _{LOW}	Voltage Low ¹	using oscilloscope math function. (Scope averag- ing on)	-150		150	mV
Vmax	Max Voltage ¹	Measurement on single ended signal using			1150	mV
Vmin	Min Voltage ¹	absolute value. (Scope averaging off)	-300			mV
Vswing	Vswing ^{1,2}	Scope averaging off	300			mV
Vcross_abs	Crossing Voltage (abs) ^{1,5}	Scope averaging off	250		550	mV
Δ -Vcross	Crossing Voltage (var) ^{1,6}	Scope averaging off			140	mV
t _{DC}	Duty Cycle ¹	Measured differentially, PLL Mode	45		55	%
t	Skew, Output to Output ¹	V _T = 50%			50	ps
t _{jcyc-cyc}	Jitter, Cycle to cycle ^{1,2}	PLL mode @100MHz output, SSC off			50	ps

Note:

1. Guaranteed by design and characterization, not 100% tested in production.

2. Measured from differential waveform

3. Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

4. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations

5. Vcross is defined as voltage where Clock = Clock # measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

6. The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

Electrical Characteristics–Phase Jitter Parameters

 $(T_A = -40 \sim 85^{\circ}C; VDD = 3.3V + /-10\%; VDDO = 1.8V + /-10\%$, See Test Loads for Loading Conditions)

Symbol	Parameters	Condition	Min.	Тур.	Industry Limit	Units
t _{jphPCIeG1}		PCIe Gen 1 ^{1,2,3,5}		25	86	ps (p-p)
		PCIe Gen 2 Low Band		0.0	2	ps
t. Loci co	Phase Jitter,	$10 \text{kHz} < f < 1.5 \text{MHz}^{1.2,5}$		0.9	5	(rms)
iphPCIeG2	PCI Express	PCIe Gen 2 High Band		16	2 1	ps
		1.5MHz < f < Nyquist (50MHz) ^{1,2,5}	0.9 3	(rms)		
+		PCIe Gen 3		0.26	1	ps
LjphPCIeG3		(PLL BW of 2-4MHz, CDR = 10MHz) ^{1,2,4,5}		25 86 (II 0.9 3 (r 1.6 3.1 (r 0.36 1	(rms)	

Notes:

1. Guaranteed by design and characterization, not 100% tested in production.

2. See http://www.pcisig.com for complete specs.

3. Sample size of at least 100k cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

4. Calculated from Intel-supplied Clock Jitter Tool.

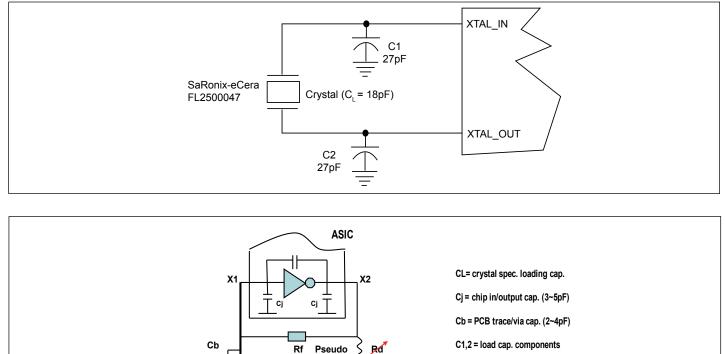
5. Applies to all different outputs.

Thermal Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
θ_{JA}	Thermal Resistance Junction to Ambient	Still air			90	°C/W
θ_{JC}	Thermal Resistance Junction to Case				24	°C/W

6

16-0010



Application Notes

Crystal circuit connection

The following diagram shows crystal circuit connection with a parallel crystal. For the CL=18pF crystal, it is suggested to use C1= 27pF, C2= 27pF. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts.

Crystal Oscillator Circuit

Cb Т

C2

- a) FL2500047, SMD 3.2X2.5(4P), 25MHz, CL=18pF, +/-20ppm, http://www.pericom.com/pdf/datasheets/se/FL.pdf
- b) FY2500091, SMD 5x3.2(4P), 25MHz, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/FY F9.pdf

sine

Final choose/trim C1=C2=2 *CL - (Cb +Cj) for the target +/-ppm


Example: C1=C2=2*(18pF) - (4pF+5pF)=27pF

Rd = drive level res. (100Ω)

Packaging Mechanical: 16-Pin TSSOP (L)

16-006

Note: For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Description
PI6CFGL202BLIE	L	16-pin, 173mil Wide (TSSOP)
PI6CFGL202BLIEX	L	16-pin, 173mil Wide (TSSOP), Tape & Reel

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

16-0010

• "E" denotes Pb-free and Green

• Adding an "X" at the end of the ordering code denotes tape and reel packaging

All trademarks are property of their respective owners.